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Abstract

Attributing outputs from Large Language Models (LLMs) in adversarial settings—such as cy-
berattacks and disinformation—presents significant challenges that are likely to grow in importance.
We investigate this attribution problem using formal language theory, specifically language identi-
fication in the limit as introduced by Gold and extended by Angluin. By modeling LLM outputs
as formal languages, we analyze whether finite text samples can uniquely pinpoint the originating
model. Our results show that due to the non-identifiability of certain language classes, under some
mild assumptions about overlapping outputs from fine-tuned models it is theoretically impossible to
attribute outputs to specific LLMs with certainty. This holds also when accounting for expressivity
limitations of Transformer architectures. Even with direct model access or comprehensive monitoring,
significant computational hurdles impede attribution efforts. These findings highlight an urgent need
for proactive measures to mitigate risks posed by adversarial LLM use as their influence continues to
expand.

The challenge of attributing outputs from LLMs in the context of adversarial attacks or disinformation
campaigns is emerging as a concern for both cybersecurity and information integrity [3, 9, 21, 17, 24].
In this context, attribution involves identifying the specific model responsible for generating harmful
outputs. This step is essential not only for conducting further investigations and determining if the
implicated model should be restricted or decommissioned but also for mitigating future risks and ensuring
accountability in the deployment of LLM-based agents [18, 19, 2].

This attribution task is, interestingly, closely related to formal language theory, particularly the
problem of language identification in the limit. This theory, introduced by Gold [10] and extended by
Angluin [1], has a rich body of work spanning theoretical computer science and cognitive science [11].
Language identification provides a formal framework for understanding how, given a set of outputs, one
can determine the source language—or, in this context, the specific LLM responsible for generating those
outputs. By framing LLM outputs as formal languages, this theory offers a structured approach to explore
the feasibility of attribution.

We can represent the outputs of an LLM as strings over a finite alphabet, where the set of all possible
outputs defines a formal language. Thus, the attribution problem can be framed as determining whether
there exists a unique LLM whose generated language includes the observed outputs.

To formalize this, we start by revisiting the concept of language identification in the limit, which
underlies this notion of unique model identification.

Definition 1 (Gold’s Identification in the Limit). A class of languages L is said to be identifiable in the
limit if there exists a learning algorithm A such that, for any target language L ∈ L, given an infinite
sequence of examples ⟨s1, s2, . . . ⟩ where each si ∈ L and each string in L appears at least once, the
algorithm A produces a sequence of hypotheses ⟨H1, H2, . . . ⟩ satisfying:

(1) For all but finitely many n, Hn = L.

(2) Each Hn ∈ L is consistent with the observed data up to time n, i.e., {s1, s2, . . . , sn} ⊆ Hn.

This framework was extended by Angluin, who provided necessary and sufficient conditions for iden-
tification from positive data.
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Theorem 1 (Angluin’s Theorem). An indexed family of recursive languages {Li}i∈N is identifiable in the
limit from positive data if and only if there exists a recursively enumerable set of finite subsets {Ti}i∈N
such that:

(1) For each i, Ti ⊆ Li.

(2) For all i ̸= j, Ti ⊆ Lj implies Li = Lj.

However, there are classes of languages where these conditions are not met, leading to non-identifiability
in the limit. Specifically, this holds for a class L with an infinite language L∞ ∈ L such that for every
finite subset S ⊂ L∞, there exists a language Lj ∈ L where S ⊆ Lj ⊂ L∞. Note the latter inclusion is
strict. This result is formalized in the following corollary of Angluin’s Theorem [1].

Corollary 1 (Non-Identifiability Due to Infinite Languages). Let L be a collection of recursively enu-
merable languages satisfying:

(i) L contains an infinite language L∞.

(ii) For every finite subset S ⊂ L∞, there exists L ∈ L such that S ⊆ L ⊂ L∞.

Then, L is not identifiable in the limit.

Proof. Assume, for contradiction, that L is identifiable in the limit. By Angluin’s Theorem, there must
exist a finite tell-tale set TL∞ ⊂ L∞ that distinguishes L∞ from all its proper subsets in L. However,
condition (ii) ensures that for every finite TL∞ , there exists L ∈ L such that TL∞ ⊆ L ⊂ L∞. This
contradicts the existence of a tell-tale set that uniquely identifies L∞. Therefore, L is not identifiable in
the limit.

From this corollary, it is easy to construct a very simple class of languages, over an alphabet consisting
of a single character, that is not identifiable in the limit.

Observation 1. For each positive integer k, let Lk be the set of all strings of length at most k over the
alphabet Σ = {x}, and let L = {Lk}k∈N ∪ {L∞}, where L∞ = Σ∗ is the set of all finite strings over Σ.
Then L is not identifiable in the limit.

Proof. Take any finite subset S ⊂ L∞ and let the longest string in S have length k. Then S ⊆ Lk ⊂ L∞
with Lk ∈ L, so the conditions of Corollary 1 apply.

In the context of LLM attribution, the family of languages L corresponds to the languages generated
by a set of LLMs M = {M1,M2, . . . }. Each model Mi defines a language L(Mi) ⊆ Σ∗, where L(Mi)
consists of all sequences that Mi can generate with non-zero probability. The goal is to determine whether
a finite set of observed outputs S ⊆ Σ∗ can uniquely identify a specific model Mk such that S ⊆ L(Mk).

Definition 2 (Attribution Algorithm). An Attribution Algorithm for a set of LLMs M is a procedure
that takes as input a stream of observed outputs S = ⟨s1, s2, . . . ⟩ generated by a single LLM Mk ∈ M
and outputs a sequence of hypotheses ⟨H1, H2, . . . ⟩ where each Hn ∈ M ∪ {unknown} represents the
algorithm’s guess of which model generated the outputs observed up to time n. The algorithm satisfies the
Identification in the Limit property if there exists a time point t such that for all n ≥ t, Hn = Mk. In
other words, after observing sufficient outputs, the algorithm will consistently and correctly identify the
generating model.

This reframes the problem of LLM attribution as designing an algorithm capable of identifying unique,
model-specific subsets within observed outputs S to reliably determine the generating model. Angluin’s
result implies that for attribution to be feasible, a finite set of outputs—a tell-tale set—must uniquely
identify each LLM’s language. Importantly, this means that the attacker must eventually produce all
elements of the language, including the tell-tale set, as we are considering identification in the limit. How-
ever, while such tell-tale sets may theoretically exist, Angluin’s framework does not provide a constructive
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or practical method for discovering them. The Attribution Algorithm may need to enumerate all pos-
sible subsets Ti and verify their uniqueness against observed data, an approach that is computationally
infeasible given the vast number of models and their fine-tuned variants (as explored below).

While these theoretical considerations suggest challenges in attributing outputs to specific models, one
might consider the inherent expressivity limitations of Transformer architectures — which underlie most
LLMs — as a potential aid in attribution. These limitations, as discussed by Strobl et al. [20], restrict
Transformers’ ability to represent certain language classes, especially those requiring unbounded counting
or hierarchical structures, such as the Dyck languages of balanced parentheses and parity-checking over
binary strings [4, 13]. Additionally, Peng et al. [16] highlight Transformers’ limited capacity for recursive
function composition, essential for languages with deep structural dependencies. These expressivity
constraints might reduce the overlap in output distributions across models, potentially aiding attribution
by introducing more distinct and bounded patterns in LLM outputs.

However, despite these expressivity limitations, fine-tuning can create significant overlaps in model
outputs, complicating attribution. Specifically, under a mild assumption about the power of fine-tuning
the impossibility of attribution satisfying Identification in the Limit can be proven formally.

Observation 2 (Fine-Tuning Leading to Non-Identifiability). Assume there exists an LLM M∞ with
infinite language such that for any finite subset S ⊂ L(M∞), we can fine-tune the base model M∞ to
produce a model MS where S ⊆ L(MS) ⊂ L(M∞). In that case, attribution satisfying identification in
the limit is not possible for the class of LLMs M = {MS | S ⊂ L(M∞) ∩ |S| < ∞} ∪ {M∞}.

Proof. Consider the class of LLMs M consisting of M∞ and, for each finite subset S of L(M∞), the
fine-tuned model MS . Note that the class of languages L = {L(M) : M ∈ M} will then satisfy the
conditions of Corollary 1:

(i) L contains the infinite language L(M∞).

(ii) For every finite subset S ⊂ L(M∞), there exists L(MS) ∈ L such that S ⊆ L(MS) ⊂ L(M∞).

Therefore, by Corollary 1, L is not identifiable in the limit, and thus attribution with identification in
the limit is not possible for M.

In a different scenario, we may have direct access to a majority of the LLMs Mi themselves, enabling
us to compute the likelihood of an observed output s under each model Mi. Using these likelihoods one
can hope to design attribution algorithms with a probabilistic flavor. However, evaluating the likelihood
PMi(s) of an observed output s under each available LLMMi involves significant computational resources.

We conducted our analysis using a dataset representing the ecosystem of LLMs [6] to understand
the growth in model sizes over time and evaluate the computational feasibility of attribution calculations
based on likelihood. The dataset consists of several LLMs developed over recent years, detailing key
parameters including model type, creation date, and parameter size in billions, including a total of 271
models with known sizes (i.e., parameter counts).

Figure 1 visualizes the evolution of model sizes over time, using known model sizes to calculate a sliding
month average and the maximum size observed up to each date. Additionally, we plot the cumulative
size across all models to understand the aggregate computational requirement if attribution calculations
needed to be run across the entire ecosystem.

To evaluate the practicality of running attribution calculations across all models, we consider a hy-
pothetical adversarial attack involving a 100,000-token output. For each model, we need to calculate the
log-probabilities of these tokens to estimate the likelihood of the output originating from that model.
Given the cumulative parameter size across all models, the total floating-point operations (FLOPs) re-
quired for this calculation grows significantly.

With the current cumulative model size in our dataset, processing a 100,000-token adversarial at-
tack would require approximately 8.7 × 1020 floating-point operations (FLOPs). To assess the feasi-
bility of such a task, we compare this with the capabilities of the Frontier supercomputer—the world’s
fastest—achieving a peak of 1.7 exaFLOPS (1.7×1018 FLOPs per second) [15]. Using Frontier’s capacity,
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(a) Evolution of Model Sizes Over Time (Actual Sizes, 6-month Sliding Mean, and Maximum Size)

(b) Cumulative Model Size Over Time

Figure 1: Overview of Model Size Evolution and Cumulative Computational Requirements in the Ecosys-
tem Dataset

a single attribution calculation across 100,000 tokens could theoretically complete in around 8 minutes
for a single attack, underscoring the difficulty of scaling attribution in an expanding landscape of LLMs.

In the final analysis, we assess the feasibility of attributing adversarial outputs to specific LLMs
within a comprehensive, national monitoring framework based on U.S. usage data – a extreme scenario.
Using realistic simulations and data from Bick et al. (2024) [5], we assume the total U.S. population is
approximately 334 million, with 39.4% of adults actively using LLMs daily. This results in an estimated
131.6 million daily users. With an average generation rate of 10,000 tokens per user per day, the annual
token volume reaches approximately 4.8× 1015 tokens. Assuming a data footprint of 4 bytes per token,
this volume equates to about 17.45 petabytes of data generated annually.
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Processing this extensive dataset demands significant infrastructure. Using a high-performance com-
puting setup with 10,000 cores and estimating each record requires approximately 10 microseconds per
token, the baseline processing time to analyze the year’s data is approximately 132.8 hours, assuming
optimal parallel processing.

While the core processing time provides a baseline, real-world conditions introduce additional delays
due to data aggregation, preprocessing, and network latency. Assuming an overhead for data collection
and preprocessing, and applying a multiplier of 2 to account for additional logistical complexities, the total
estimated time for attribution increases to approximately 265.6 hours (or roughly 11 days) to attribute
a single adversarial output. Table 1 highlights that even under idealized conditions, attributing a single
adversarial output from vast data volumes is a complex and resource-intensive task.

Metric Value

Daily LLM Users (U.S.) 131,596,000

Annual Tokens 4.8× 1015 tokens

Yearly Data Volume 17.45 PB

Estimated Processing Time (Core Total) 132.8 hours

Adjusted Processing Time with Overhead 265.6 hours

Table 1: Estimated Attribution Time for U.S. LLM Usage

Beyond these challenges of direct identifiability, also issues stemming from network dynamics [14, 8]
impact attribution feasibility. In many real-world cases, harmful content or attacks propagate through
complex networks, complicating efforts to trace them back to their origin. Attackers can exploit these
network structures by rewiring connections or introducing counterfeit nodes, leveraging the diffusion
properties of networks to evade detection and mask their identity [22, 23, 7].

Furthermore, Kleinberg and Mullainathan’s surprising findings [12] reveal that while attribution re-
mains challenging, generation in the limit is in fact achievable. In a framework similar to Definition
1, their work shows that it is possible for a computational agent to generate new, valid strings from
a target language without identifying it explicitly—an ability fundamentally different from language
identification- as it bypasses the need for complete model attribution. This capability suggests that,
theoretically, defenders could match adversarial capabilities by reproducing attack outputs in the limit,
creating a scenario where attackers and defenders are locked in a cycle of confusion, unable to find the
true origin, and mutual escalation.

Whether with limited access to adversarial outputs, direct access to models, or even within a com-
prehensive monitoring framework, attributing specific outputs to individual LLMs remains profoundly
challenging. As LLMs become increasingly powerful and widespread, the complexities of attribution
raise significant concerns. This underscores the urgent need for robust safety protocols and regulatory
measures to mitigate risks before LLMs are made broadly accessible to the public.
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