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Abstract
The interest in studying the phenomenon of data contamination has recently increased due to the establishment of Large
Language Models as the dominant technology for a vast array of information processing tasks. This position paper describes
the reasons behind this increased awareness about data contamination and reflects on its possible implications for the field of
Recommender Systems.

The phenomenon of data contamination happens in
machine learning when one or more test instances have
been incorporated to the set of training instances. This
dataset that is used to train one or more machine-learnt
models, and the eventual models themselves as well, are
then considered contaminated, or compromised in the
sense that the performance measurements obtained dur-
ing model evaluation –and the conclusions built on top of
them with respect to the hypotheses under consideration–
do not necessarily correspond with the actual predictive
power of the evaluated model [1]. Indeed, as test in-
stances are part of the learnt distribution, model evalua-
tion over those instances may exaggerate its claimed gen-
eralization capabilities [2]. Although the phenomenon
was already known [3], the study of data contamination
has significantly increased in recent times of explosion of
generative AI with the dominance that Large Language
Models (LLMs) have across several spaces of research
problems in language technology and closely related in-
terests from industrial applications [1, 4, 5]. The mech-
anisms for training LLMs are particularly affected by
contaminated data in multiple manners. Also, although
a possibly short-lived definition of data contamination
might have referred to test instances inadvertently added
to the training set, as recent studies show, there exist
scenarios behind widely-used LLMs where contamina-
tion may be part of its standard refinement practices [2].
Moreover, recent literature also confirms that data con-
tamination can no longer be attributed exclusively to
exact “copies” of test instances in training set but also
due to training instances that, while not part of test set,
are sufficiently similar to some counterpart in this test
set. This work brings focus on data contamination and
reflects on its possible implications for areas such as Rec-
ommender Systems, whose methodologies increasingly
rely on LLM technologies and hence are affected by the
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downstream contamination phenomenon [6].
In a fundamental way, LLMs are trained autoregres-

sively over vast amounts of crawled web corpora. In
the linguistic patterns that characterize all this data lies
the core of the statistically learnt abilities that the LLMs
(seem to) exhibit. Any of these textual patterns that has
been memorized in the LLM likely helps the prediction
performed by an LLM when it matches part of the input
that elicits generation [2]. The LLM training is typically
complemented with the integration of several datasets in
a multi-task learning fashion. These datasets are usually
selected as representative among the collections devel-
oped in research for the study of phenomena behind
one or more well-established tasks. The multi-task inte-
gration of datasets into the training has been observed
to contribute towards contaminating LLMs [7, 8]. The
contamination effects extend to the scenarios where the
training also incorporates documentation guidelines that
indicate, by instructions and possibly also via examples,
how to annotate instances in a data labeling experiment.
Additionally, with the establishment of LLM-as-a-service,
the prominent IT providers behind them have an incen-
tive to identify instances that are convenient to be added
into the training, typically via fine-tuning [2]. Exam-
ples of these instances are cases where the model under-
performs, but also instances that the back-end algorithms
of a closed, commercial LLM deems interesting, possibly
due to sufficient rareness with respect to the data already
incorporated.

These characteristics of the data contamination phe-
nomenon make it a multi-faceted problem space that is
currently under heavier scrutiny from the Natural Lan-
guage Processing (NLP) community [1, 2, 9]. The liter-
ature reporting and quantifying aspects of (part of) the
detected magnitude of contamination in an LLM is rather
seldom [7, 10], which represents another key facet of the
challenge for the involved research communities. Plus,
the aforementioned technical discrepancies in the over-
claims about generalizability that may arise by analyzing
performances of contaminated models ramify into ethi-
cal consequences of various degrees. These implications
can be particularly harmful in sensitive application areas
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such as the domains of medical, financial or legal deci-
sion making [11]. The same work also notes that the
incentives for business organizations that provide digital
services based on generative AI likely clash with possible
awareness and admission about wrongly claimed abilities
in these technologies. The possible ethical implications
of the usage of contaminated models should be consid-
ered as extending the space of concerns under study in
communities like Recommender Systems, where poten-
tial harms derived by generative methods have recently
increased their presence in relevant literature [6].

In spite of the increasing efforts to refine the character-
ization of data contamination and the study of proposed
strategies to detect and minimize it [12, 11], the principle
of presumable compromise assumes that if it can be con-
taminated, data should be considered as it is already com-
promised [2]. This phenomenon indirectly spreads out to
other technologies, since contamination is inherited by
datasets or models built on top of LLMs [2] through the
variety of configurations in training regimes across stages
like pre-training and fine-tuning [13]. Hence, the study
of contaminated data is of high relevance for fields like
Recommender Systems, where the developed methods
to address its research problems are increasingly more
based on LLMs [14, 15, 6].

In the area of LLM-based recommender systems, at
least two contamination sub-phenomena may require
especial interest from the community. First is the as-
pect of partial overlap. Specifically, a test instance does
not always need to fully appear in the train set, but in-
stead it is enough for one of its components to have been
present during training to possibly contribute to contam-
ination [3]. As an example, if each instance in a dataset is
composed of (certain representation for each component
of) a user, an item and a score, the user component being
already seen and memorized during training can help
the LLM perform better in its predictive abilities, and by
this it can then also lead to wrong claims about gener-
alization abilities from these results. Secondly, the as-
pect of sufficient similarity allows for a training instance
to be contributing to contamination if it is sufficiently
similar to a test counterpart. In NLP studies, this has
been observed in scenarios where an instance is similar
to another in some linguistic space, e.g. one is a para-
phrase or a translation of the other [16]. In the context
of recommender systems, similarity could occur, paradig-
matically, between respective instances which partially
or fully characterize two users or two items by any of
multiple possible representations (e.g. data based on in-
teractions, user or item descriptions, queries, reviews,
ratings, associated images, among others).

Another distinguished aspect in data contamination
that should be taken into account by the Recommender
Systems community is the employment of generative
models to augment annotated data [17, 18, 19], espe-

cially the developments towards automatic data label-
ing with LLMs [20]. Whether the annotations are ob-
tained by approaches like pseudo-labeling or weak su-
pervision [21, 22] or by interaction-based data as in tradi-
tional recommender systems [6], these labeling strategies
may introduce errors in several manners. And model fam-
ilies that are subject to be affected by contaminated data,
particularly LLMs, can be detrimental in the ways associ-
ated to contamination that, as described here, are still in
early study and still to be fully characterized.

This paper has described the recently increased in-
terest on studying data contamination in generative AI
as crucially dependable on LLMs, and its reflection on
the space of possible implications for the Recommender
Systems calls for the analysis about the need for a corre-
sponding awareness from this field.
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