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Abstract
The paradigm shift unleashed by Entity-Oriented Search still characterizes a vast space of the dynamics
with which users engage in digital information access, from Web search to e-commerce and social
networks. The progress in research around Entity Retrieval tasks has in particular shown the convenience
of incorporating type-based information for entities in their methods to provide relevant answers to
queries. As types are typically accessible in an ontology of reference within the knowledge base where
their assigned entities live, automatically identifying query target types is a relevant problem to tackle. In
this work, we propose to address the task of Query Target Type Identification by assessing the capabilities
of Large Language Models that have recently shown widespread success. Our experimentation with
methods based on Retrieval-Augmented Generation over a purposely built test collection from the
literature challenges a well-established closed LLM by presenting it with entity type information from a
resource within the core in hubbing Linked Open Data.

1. Introduction

The emergence and consolidation of Entity-Oriented Search (EOS) represent a milestone in
the evolution of web search paradigms [1]. The space of services provided by search engines
were subtly yet decisively upgraded by offering more direct responses to the user beyond the
traditional “blue links.” Indeed, the cognitive workload of finding the actual desired information
within relevant documents is alleviated in several scenarios where Search Engine Response
Pages (SERPs) provide focused replies, among others, via widgets (like the ones about weather
information), entity cards (or infoboxes summarizing factoids, for example, about an artist or a
city) and direct answers. In a virtuous cycle, users demand it more often and in more scenarios,
by issuing more entity-centric queries, hence the paradigm is reinforced and nowadays as
expected as it is ubiquitous. Interwoven with these industrial developments, the focus on
entities in research largely established around studying a paradigmatic type of entity, people,
in tasks such as expert finding [2]. It then broadened to all kinds of entities alongside the
increasing efforts in Semantic Web to build knowledge bases (KBs) for more and more domains
of knowledge, where uniquely identified entities are first-class citizens described by properties
and related to other entities. Addressing Entity Retrieval (this is, the problem of ranking
relevant entities for an entity-centric query) has enabled a considerable body of research where
methods often incorporate information relevant to entities that is stored in KBs [3, 4]. Other
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than properties and relationships as mentioned, a characteristic knowledge item for an entity is
its semantic classes or types, typically assigned from an ontology or type taxonomy existing
in correspondence to the KB [5]. As it has been studied, Entity Retrieval (ER) gets benefited
from integrating type-based information about the expected entities for the query into the
ER approach [6]. Hence, a related significant problem in Entity-Oriented Search is the one of
automatically identifying query target types, i.e. the types of all the entities expected to be
relevant for answering the query [7]. We refer to this problem as Target Type Identification
(TTI), and it is the task that we address in this paper.

To the best of our knowledge, the state-of-the-art TTI approach over the latest developed
benchmark is a Learning-to-Rank (LtR) method, where a combination of several kinds of features
is manually selected and whose respective importance is then supervisedly learnt [8]. These
features complement each other, as this particular LtR instance brings together query attributes,
type attributes, and the scoring from multiple rankings using both traditional lexical matching
and Language Models to capture similarity based on distributional semantics in latent space.
An attempt to update its performance results into a new state of the art for TTI could exploit
modern Large Language Models (LLMs) to replace the more primitive LMs previously used,
or even further, possibly replacing many or all previous features with a feature set only made
of LLMs. However, although this may indeed improve and, in a way, absorb several of the
non-(L)LM features into few modeled by representation –or deep– learning (DL), the feature
engineering of the underlying LtR method remains. An alternative consists in re-approaching
the TTI task by replacing the feature design altogether with a mechanism that directly uses
a single, powerful LLM while integrating the external knowledge that is expected not to be
well represented in, or not captured at all by, the billions of an LLM’ parameters. The object
of experimentation in our work is this alternative by the means of a Retrieval-augmented
Generation (RAG) framework [9] that by design integrates explicit knowledge –here, types in
the ontology of a widely known KB– with the parametric knowledge that has shown successful
performance in a variety of tasks [10, 11, 12, 13]. In a series of experimental configurations for
RAG-based methods, we assess the abilities exhibited by an established, commercial, closed
LLM in identifying target types. Throughout these analyses, we explore an area such as TTI in
the encompassing integration of structured entries from a key hub resource in Linked Open
Data into the vast space of information technology around LLMs.

2. Query Target Type Identification

Given an entity-centric or entity-oriented query 𝑞 —this is, a query to be answered with
relevant entities— and a type taxonomy 𝑇 , Hierarchical Target Type Identification (TTI) (or
Query TTI) [7, 8] is the problem of returning a ranking that lists all the main target types of the
query, this is, such that (i) they are the most specific entity classes that are relevant to 𝑞, and (ii)
they are not on the same path from the root in the tree 𝑇 two-to-two.

Since this definition imposes a number of criteria in the way a TTI method is to be assessed,
we assume a slightly different set of criteria during evaluation. First, we evaluate a TTI output
with set-based metrics, i.e. not order-based as we do not request the LLM to provide a ranking
of the correct target types for a query. Also, although requested to the LLM with this definition



during augmentation —i.e. regarding the need for being of highest specificity in non-overlapping
taxonomy branches—, we do not allow for leniency on the evaluation of this hierarchical nature;
the criterion is binary and hence we do not give any sort of discounted scoring for wrongly
predicted types that are taxonomically close to the correct one(s).

2.1. Retrieval-Augmented Generation

We consider each of our parameter configurations as a TTI method based on Retrieval-augmented
Generation (RAG) [9]. Following established literature practices [14, 15], we instantiate the
common naive RAG framework in its three distinctive stages.

The first component performs retrieval to obtain a ranked list of target types for each
query. This crucial step is the one selecting the items from external information to be then
provided explicitly during the following stage, augmentation. As in this work we are interested
in assessing the abilities of LLMs to integrate this explicit knowledge with its parametric
sources, we assume two possible (near-)optimal retrievers. First, an oracle retrieval assumes
the ground-truth ranked target types from the test collection (cf. Section 2.3) as a perfectly
informed type ranking. Second, an extension of this oracle, that we refer to as pseudo-oracle, is
obtained for each query by adding, after the oracle-given ranked types, all new types coming
from the union of the type sets in the ontology for all the top-1,000 entities retrieved with BM25,
a solid first-pass retriever [16]. As we describe below in Section 2.3, the relevance score for
each query-type pair in the collection allows us to use the ground-truth target types for each
query as an oracle ranking in our experimentation for the retrieval stage. This order is also
the by-ranking oracle order of passages in augmentation phase, and the order of the opening
sub-sequence (corresponding to this oracle ranking) of the retrieved pseudo-oracle.

In the second RAG stage, augmentation, we engineer a prompt to provide the retrieved
target types for LLM assessment. The prompt starts with a header that describes the task at
hand, and the format of the input data and its expected output:

“ You are an assistant for a question-answering task. You are provided with entity types (or classes)
from DBpedia ontology version 2015-10, each type preceded with its corresponding identifier or type
ID. Then, you are provided with a user query that has been issued to a search engine. This query is
best answered by ranking entities that are relevant to the query. Use the types and the query that
you are provided with, to ANSWER the QUESTION to the best of your ability. If you don’t know
the answer, just say that you don’t know. Keep the answer concise. Always mention one or more
corresponding type IDs (which must be among the given TYPES) in their correct format (this is,
<dbo:X> for a type with name X). Examples are given below, each example between the ’<example>’
and ’</example>’ tags. After that, you are given the query with types so that you answer the question.
”

In the zero-shot prompting scenarios, the part about providing examples (from “as it’s done in
each example” to “After that,”) is omitted from the prompt. Otherwise, this header above is fol-
lowed by one or more examples in the same format as the main item of the task. The prompt ends
with this main item, i.e. the actual set of retrieved types –provided in a particular order according
to an experimental parameter– followed by the query, the main task question for the LLM and an
open field “Answer:” to be completed with the generated answer. Each type is given by its ID in
a pseudo-URI (Universal Resource Identifier) <dbo:X> for camel-cased type X, and its full type



name as a valid expression in natural language. In an augmentation-phase parameter, we experi-
ment with providing also a short description of the type, if available for its URI in DBpedia 2016-
04 via the comment predicate, <http://www.w3.org/2000/01/rdf-schema#comment>.
The task question asks to the generator:

“ Which one(s), if any, of the provided entity type(s) are the main target types of the query, this is,
such that (i) they are the most specific category of entities that are relevant to the query, and (ii) they
are not on the same path from the root in the tree induced by the DBpedia 2015-10 ontology? ”

The generation phase completes the RAG pipeline. In all our experiments, we input the
prompt build during augmentation into GPT-3.5 (gpt-3.5-turbo-0125) [10].

2.2. Research Questions

The research questions that guide our experimental analysis in Section 3 are the following:

• RQ1: How does the LLM perform at assessing the target types given by an optimal or
near-optimal retriever?

• RQ2: What is the impact of the order in which these retrieved types are in the prompt?
• RQ3: Does adding a textual description to each type name help identifying target types?
• RQ4: How much do the few-shot examples provided in the prompt contribute?
• RQ5: What performance differences are observed across query groups?

2.3. Experimental Setup

Test collection. The dataset to evaluate TTI performances is based on DBpedia-Entity, an
Entity Retrieval (ER) collection [4]. DBpedia-Entity contains 485 user queries that aggregate
multiple ER benchmarks, where relevance of entities from DBpedia 2015-10 were judged by
annotators. The TTI collection [8] builds on top of it by assigning human judgements of target
types from DBpedia 2015-10 ontology for 479 of the 485 DBpedia-Entity queries (the remaining 6
failed to get annotated types). Specifically, 7 annotators judged types pooled by first-pass lexical
retrievers. Each query gets then a set of relevant target types, with the number of annotators
for each type as its relevance, making the total amount of annotators across all types for a query
to be 7. These scores allow for assuming the TTI ground truth as a ranking.

Evaluation metrics. We measure the performance of a method on each query, in terms of
traditional set-based metrics used in Information Retrieval, specifically Precision, Recall, and
their harmonic mean F-Score. We report the average performance across a query set, for few
query sets of interest: the entire set of 479 queries in the TTI collection, and each of the four
query groups in its partition (SemSearch-ES, INEX-LD, QALD2 and ListSearch).

Method configurations. This is a summary of our experimental parameters:

• (Retrieval) method: oracle or pseudo-oracle retriever;
• (Augmentation) type information –only the name, or name and description–; type order

–as given by the ranking, or random–; and few-shot learning –zero-shot or one-shot.



3. Experimental Results

Table 1 presents the experimental results for all the RAG-based TTI methods given by the
parameter configurations described in the previous Section.

RQ1: Assessing near-perfect type retrieval. We first observe a very high precision for
most cases, and especially for one-shot augmentation setting. Yet, in these same results we can
verify that this LLM still fails to compare with the perfect retrievers, hurting the performance
even further with peudo-oracle retrieval. Recall measurements are clearly underperforming.

RQ2: Impact of order of retrieved types in prompt. In the majority of the cases of
methods and evaluation metrics, the scenario of types ordered by ranking is the best performing,
giving weight to observations in the related work regarding artefacts in the LLM favouring
the memorization of the typical by-ranking order in RAG. However, for some metrics the
best performing method in an entire query group, and in particular for every metric in the
measurement for all queries in the collection, performs best with random order of types.

RQ3: Importance of type description alongside type name in prompt. In most cases,
we observe that for oracle-based methods, the provision of the type description results slightly
detrimental, arguably introducing confusion rather than positively complementing the type
name. Instead, for methods using the pseudo-oracle retriever, the type description helps improve
the performance, as they possibly add a correction to the misleading types.

RQ4: Contribution of examples in few-shot learning. As expected, the one-shot learning
in the prompt benefits almost all the scenarios across methods and metrics, often substantially,
and in several cases achieving a performance very close to perfect.

RQ5: Breakdown by query groups. INEX-LD –general keyword queries– is, overall, as
expected, the most challenging group, while ListSearch –entity list queries– and SemSearch-ES
–named entity queries–, groups that lend themselves into entity types, the best performing ones.

4. Conclusion and Future Work

In this work we have addressed Target Type Identification via LLM-powered RAG methods.
In future lines of work, we aim to experiment with (i) alternative evaluation criteria that

take into account the hierarchical nature of TTI, (ii) sub-optimal retrievers to assess the more
realistic performance, and (iii) incorporating more aspects of the graph-based nature of both
the type system and the knowledge base that hosts the entities.
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Table 1
Experimental results over all the queries in the test collection (first block), as well as over each of its
query groups (second to fifth blocks). In each block, the best performance on a metric is shown in bold.

Retriever Type Information Type
Order

Zero-shot One-shot
Prec. Rec. F-Sco. Prec. Rec. F-Sco.

Query group: All queries in the test collection

Oracle
Name

By ranking 0.9355 0.7022 0.7719 0.9833 0.7215 0.8001
Random 0.9436 0.7105 0.7811 0.9854 0.7273 0.8049

Name + Description
By ranking 0.9315 0.6931 0.7637 0.9791 0.7213 0.7986
Random 0.9292 0.692 0.7608 0.9854 0.7258 0.8036

Pseudo-O.
Name

By ranking 0.8697 0.6698 0.7225 0.8925 0.6666 0.7334
Random 0.85 0.6473 0.703 0.8789 0.6567 0.7214

Name + Description
By ranking 0.8826 0.6913 0.7395 0.9134 0.6722 0.7432
Random 0.8624 0.6692 0.7188 0.8982 0.6644 0.7324

Query group: SemSearch-ES

Oracle
Name

By ranking 0.9766 0.7349 0.8073 0.9844 0.7238 0.8024
Random 0.9688 0.7346 0.8049 0.9844 0.7275 0.8052

Name + Description
By ranking 0.9766 0.7171 0.7932 0.9844 0.7238 0.8024
Random 0.9531 0.7105 0.7815 0.9844 0.7171 0.7958

Pseudo-O.
Name

By ranking 0.875 0.6604 0.7146 0.8945 0.6611 0.7297
Random 0.8307 0.6292 0.6823 0.8516 0.6207 0.6878

Name + Description
By ranking 0.8698 0.6669 0.7161 0.8984 0.6507 0.7229
Random 0.8646 0.6415 0.7029 0.9102 0.6624 0.7346

Query group: INEX-LD

Oracle
Name

By ranking 0.9192 0.6524 0.7327 0.9697 0.6574 0.7492
Random 0.9091 0.6397 0.7226 0.9697 0.6709 0.7589

Name + Description
By ranking 0.8956 0.6423 0.7172 0.9495 0.6549 0.7418
Random 0.8939 0.6153 0.6993 0.9697 0.6684 0.7582

Pseudo-O.
Name

By ranking 0.8367 0.612 0.669 0.8081 0.5648 0.633
Random 0.8013 0.564 0.63 0.8182 0.5682 0.638

Name + Description
By ranking 0.8418 0.6279 0.6795 0.8535 0.585 0.6613
Random 0.8148 0.5901 0.6495 0.8283 0.5581 0.6347

Query group: QALD2

Oracle
Name

By ranking 0.9065 0.7243 0.7772 0.9855 0.7732 0.8365
Random 0.9275 0.7448 0.7995 0.9928 0.7804 0.8437

Name + Description
By ranking 0.9094 0.7134 0.7708 0.9928 0.7804 0.8437
Random 0.9246 0.7454 0.7912 0.9928 0.7829 0.8459

Pseudo-O.
Name

By ranking 0.9203 0.7388 0.7911 0.9565 0.7581 0.8179
Random 0.9239 0.737 0.7882 0.9384 0.7472 0.8034

Name + Description
By ranking 0.9529 0.7714 0.8215 0.9638 0.7605 0.8215
Random 0.9143 0.7629 0.7988 0.9529 0.7514 0.8099

Query group: ListSearch

Oracle
Name

By ranking 0.9386 0.682 0.7599 0.9912 0.712 0.7977
Random 0.9649 0.7032 0.783 0.9912 0.712 0.7977

Name + Description
By ranking 0.9386 0.6857 0.7626 0.9825 0.7047 0.7892
Random 0.9386 0.6732 0.7541 0.9912 0.7164 0.8006

Pseudo-O.
Name

By ranking 0.8311 0.6469 0.695 0.886 0.6506 0.7225
Random 0.8246 0.6316 0.6865 0.8904 0.6645 0.7325

Name + Description
By ranking 0.8472 0.6769 0.7187 0.9211 0.6652 0.7424
Random 0.8385 0.6557 0.7 0.8794 0.6535 0.7211
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