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Abstract. When answering a user query with relevant entities from a
knowledge base (KB), utilizing their semantic class or type information
typically structured in the KB is known to improve the retrieval per-
formance for these entities. Accordingly, it is important to identify the
target types of entities expected by a query. This work addresses the
task of Target Type Identification (TTI) by replacing the established
supervisedly learnt ranking approach with a generative approach pow-
ered by Large Language Models (LLMs). Beyond assessing the ability of
LLMs at predicting query target types, we study aspects of the strategy
to elicit generation, in particular, the role of example relevant entities in
supporting the explanation of mechanisms behind the LLM predictions.
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1 Introduction

When searching on the Web, users often issue queries that are better answered
with entities, such as people, locations, organizations and events. For example,
the query ‘nobel prize winners physics’ aim for answers including entities such as
Marie Curie and Albert Einstein. This entity-centric paradigm has consolidated
in major commercial search engines, since results are no longer just “blue links”
pointing to documents with relevant information but instead direct results via
widgets and cards with entities as first-class citizens (Balog, [2018]). Millions of
entities within multiple domains of knowledge, are typically uniquely identified in
a knowledge base (KB) of reference to the search engine that stores structured
information about them. The mentioned answer entity Albert Einstein, in a
typical KB (with, for simplicity, unique identifier Einstein), is possibly related
with other entities (e.g. (Einstein, born_ in, Ulm)) and with a distinguished unit
of information, its semantic class or type (e.g. ( Einstein, is_a, Physicist)). In
the problem of entity retrieval (ER) (this is, returning a list of entities from a KB
for an input query such that they are ordered by relevance) (Balog et al.| [2011}
2012), it is known that incorporating the target types of the query (i.e. the types
of its relevant entities) can improve the performance of ER methods (Garigliotti
et all [2019). Hence, in this paper we address the problem of query target type
identification (TTI) (this is, returning a ranked list of target types for an input
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query) (Garigliotti et al., 2017)), which is fundamental to obtain the type-based
information to be incorporated during ER.

Established TTI approaches rely on a learned ranking method that aggre-
gates complementary supervised learning features, including query attributes,
type attributes, and features capturing the relevance of a type as a target for
a query based on underlying suboptimal ranking methods (Garigliotti et al.
2017). Representation -or deep- learning (DL), instead, allows for abstracting
the feature design altogether and learn the feature set itself. With the notable
DL-driven development in Language Models, especially the recent state-of-the-
art performance by Large Language Models (LLM) in a variety of tasks (Radford
et al., [2019; |Si et al.,|2023), we are interested in assessing the ability of LLMs for
addressing TTI, while also making the predictions that it generates explainable.
This aligns with the increasing demand in the research community for develop-
ing trustworthy technologies for an also increasing number of human-centered
LLM applications (Liu et al., [2023). Specifically, we aim to exploit the relevant
entities of a query, as natural bridges with its target types, by including them
in the prompt when asking an LLM to generate these types. We expect these
entities to serve as witnesses to explain the rationale behind the particular target
type outputs generated by the LLM. Our approach brings together these differ-
ent information units (query, entities, types) within a series of methods under
Retrieval-Augmented Generation (RAG), a framework that extends the implicit
information stored in the model parameters with explicit knowledge incorpo-
rated while prompting an LLM (Garigliotti et al., 2024; |Garigliotti, 2024). This
paper presents initial developments on assessing the impact of these entities in
serving as witnesses to explain the rationale behind the particular target type
outputs generated by the LLM.

2 Methodology

2.1 Problem

Given an entity-oriented query ¢ —i.e. a query whose expected answers are all
entities— and a type hierarchy T of reference —typically available in a KB—,
the task of Hierarchical Target Type Identification (TTI) (Balog and Neumayer,
2012; |Garigliotti et all 2017)) consists in returning a ranked list R(q) € T such
that R(q) has all the main target types of the query, this is, such that (i) they are
the most specific category of entities that are relevant to the query, and (ii) they
are not on the same path from the root in the tree induced by 7. In particular,
(i) means that if t € R(q) and ¢ is a descendant of ¢’ in T, then t' ¢ R(q).

2.2 Approach

We approach LLM-based TTI via a series of methods all within the common
framework of Retrieval-Augmented Generation (RAG) (Lewis et al, 2020, |Gao
et al., [2023)). Specifically, in our instantiation of the RAG pipeline, the first



Entity Examples for Explainable Query TTI with LLMs 3

stage, retrieval, obtains relevant target types for the input query in a first, solid
pass. The second stage, augmentation, incorporates these retrieved items in a
well-engineered prompt that requests to identify the target types among the can-
didates, according to the TTI problem specification also provided in the prompt.
In the final stage, generation, an LLM is prompted to answer the question re-
quiring to solve the TTT task. Starting from a basic prompt that contains the
query and type candidates from which the LLM must identify the correct ones,
we experiment with alternative configurations where increasing sets of relevant
entities are also provided. We are interested in how these entity sets can be un-
derstood to explain an LLM generation prompted with relevant entity examples.
Our experiments are designed and conducted to answer these research questions:

— RQ1: How does RAG perform when assuming (near-)optimal retrieval stage?
— RQ2: What is the impact of the order of types, and of few-shot illustrations?
— RQ3: How does the number of entity examples explain the generated types?

2.3 Experimental Setup

Datasets. DBpedia-Entity (Balog and Neumayer) [2013)) is a test collection for
entity retrieval comprising 485 queries compiled from different benchmarking
campaigns, with their respective relevant entities from DBpedia 2015-10 KB
judged by human annotators. The TTI test collection (Garigliotti et al., [2017)
extends DBpedia-Entity with judgments on types from the DBpedia 2015-10
ontology for 479 queries (the missing 6 fail to have any meaningful type).

RAG configurations. In the retrieval stage, for simplicity, we assume that a
perfect target type retriever is in place. This allows us to focus on aspects opera-
tionalized in the augmentation phase, especially the provision of entity examples,
and on assessing how well an LLM identifies among these types during genera-
tion. We refer to the TTI test collection —itself an optimal retriever— as the or-
acle. We also consider a pseudo-oracle, this is, a near-optimal TTI method, which
extends the oracle for each query with the union of the sets of types for all its
entities retrieved with BM25 (Robertson, [1977)), a solid lexical retrieval method.
Then, during augmentation, we build a prompt that presents the query and
retrieved type candidates, and asks to identify the correct target types as defined
in Section[2.1] Alternative experiments also provide examples of entities relevant
to the query. Orthogonally, we experiment with few-shot prompting with illus-
trations of the expected output answer for an input instance made of query, type
candidates and possibly entity examples. Finally, at generation stage, we input
the prompt into the GPT-3.5 (gpt-3.5-turbo-0125) LLM (Radford et al., [2019).
This is a summary of our parameter configurations:

— Retrieval: method —oracle or pseudo-oracle—.

— Augmentation: order of the passages in the prompt —as retrieved in rank-
ing, or random—; number of few-shot illustrations —0 or 1—; and size of
the entity example set —0, 1, 2, 3, 4, or 5—.

Each possible combination of values set for all the experimental parameters
determines a (RAG-based) TTI method in our study.
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FEvaluation metrics. We report the average performance across all the queries in
TTT collection, measured in terms of precision, recall, and F-score.

3 Experimental Results

Answering RQ1: In all settings and for all metrics, the best performing meth-
ods use, as expected, optimal type candidate retrieval. The pseudo-oracle cases
are more realistic scenarios where retrieval stage is imperfect, and the LLM is
confused by the additional near-optimal type candidates.

Answering RQ2: In general, differences in performance by the order of provided
types are very small when assuming oracle retriever. With pseudo-oracle, correct
types appear (i) ranked from ground truth and (ii) before the additional candi-
dates, so differences are larger and always favour the order by ranking. Results
about the impact of zero- versus one-shot prediction are mixed.

Answering RQ3: The example set of size 1 provides only the highest-ranked
entity, and increasingly larger sizes correspond to deeper entity retrieval cut-offs.
We observe a very slight improvement in precision when adding more entities,
and a substantial drop in recall when adding the first entity in zero-shot mode.

4 Conclusion and Future Work

In this work, we have studied the usage of LLM-powered Retrieval-Augmented
Generation methods for query target type identification. This preliminary devel-
opment sheds light on the impact of relevant entities as support when approach-
ing explainability of the generation of predicted target types.

Ideally, the example entity set would be as small as possible while support-
ing optimal TTI performance. In future research, we aim to frame our approach
within machine teaching (MT) (Zhu et al., |2018; |Telle et al.,|2019) —addressed
only adjacently in our work—, whose formalism centers around such a minimiza-
tion of the witness set used to train a machine learner for identifying concepts.
A possible direction is to formalize it in terms of the target types as the concepts
to be predicted by a learned model. Another space of research could explore, in-
stead, the conceptualization by the underlying task of entity retrieval for a query.
A third line of work would study further aspects of the TTI problem, such as
(i) its hierarchical nature, (ii) the dedicated query grouping criteria in the test
collection, as well as (iii) regarding the order between query-entity and entity-
type bridging stages; dimensions that remain out of the scope of this preliminary
work due to space limitations. Another missing side of the results is a qualitative
analysis of which actual instances of queries and/or types are involved in every
observed method.
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Table 1: Experimental results for the studied methods over all the queries in the
TTT test collection. In all these experiments, the generator LLM is GPT-3.5. In
each block of this table, the best performance on a metric is shown in bold.

Retrieval Types Zero-shot One-shot
method order Prec. ‘ Rec. ‘ F-Sco. | Prec. ‘ Rec. ‘ F-Sco.
Size of entity example set: 0
Oracle By ranking | 0.9687| 0.8341 | 0.8727 | 0.9729| 0.7119| 0.7903

Random 0.9676 | 0.8483| 0.8831 | 0.9541 | 0.6906 | 0.7692
Pseudo.O. By ranking | 0.8321 | 0.6971 | 0.7108 | 0.9207 | 0.6812 | 0.7521
Random 0.8139 | 0.6785 | 0.6922 | 0.8768 | 0.6558 | 0.7209
Size of entity example set: 1
Oracle By ranking | 0.9812| 0.7655| 0.8305| 0.9791 | 0.7173 | 0.7955
Random 0.9812| 0.7587 | 0.8247 | 0.9833| 0.7223 | 0.8003
Pseudo.O. By ranking | 0.8687 | 0.6814 | 0.7246 | 0.9217 | 0.6807 | 0.7523
Random 0.8507 | 0.6623 | 0.7039 | 0.8768 | 0.6524 | 0.7191
Size of entity example set: 2
Oracle By ranking | 0.9833| 0.7566 | 0.8237 | 0.9875| 0.726 | 0.8043
Random 0.9833| 0.7679| 0.8322| 0.9791 | 0.7166 | 0.7953
Pseudo-O. By ranking | 0.8723 | 0.6684 | 0.7209 | 0.9092 | 0.6724 | 0.7419
Random 0.8441 | 0.6412 | 0.6942 | 0.8747 | 0.6494 | 0.7157
Size of entity example set: 3
Oracle By ranking | 0.9916| 0.7505 | 0.8219 | 0.9833 | 0.7196 | 0.7983
Random 0.9916| 0.7536 | 0.8245| 0.9854| 0.7206| 0.7997
Pseudo.O. By ranking | 0.8673 | 0.6558 | 0.7129 | 0.9071 | 0.6694 | 0.7396
Random 0.8403 | 0.6412 | 0.693 | 0.8601 | 0.6369 | 0.7031
Size of entity example set: 4
Oracle By ranking | 0.9875 | 0.7609 | 0.828 0.9833| 0.7181| 0.7971
Random 0.9916| 0.7602 | 0.8287| 0.9854 | 0.719 | 0.7984
Pseudo-O. By ranking | 0.876 | 0.6605 | 0.7203 | 0.904 | 0.6651 | 0.736
Random 0.838 | 0.6407 | 0.6936 | 0.8674 | 0.6501 | 0.7143
Size of entity example set: 5
Oracle By ranking | 0.9875| 0.7574 | 0.8254| 0.977 | 0.7133 | 0.7916
Random 0.9861 | 0.7581| 0.8242 | 0.9854 | 0.7213| 0.8003
Psetdo-O. By ranking | 0.8753 | 0.6637 | 0.7209 | 0.9071 | 0.6692 | 0.7404
Random 0.8252 | 0.627 | 0.6782 | 0.8685 | 0.6489 | 0.7141
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