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Abstract. As Large Language Models (LLMs) become increasingly ubiq-
uitous in data-driven methods for multiple information processing tasks,
so is also more significant the need to provide explainability mechanisms
for these methods. In this work, we tackle a paradigmatic instance of
the family of Question Answering problems by the means of a general
approach based on Retrieval-augmented Generation (RAG). We focus
not only on the performance for different parameter configurations but,
in particular, on augmentation strategies that inquire the very generator
LLM about its own interpretations behind the answer that it provides
for a question.
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1 Introduction

In recent years, the development of —and accompanying body research on—
language models (LMs) has taken a significant step forward with the appear-
ance of so-called Large Language Models (LLMs). These LLMs are trained with
state-of-the-art technologies in elements such as the learner architecture —distin-
guishedly the transformer— and the training regime —including multi-tasking,
fine-tuning, and Reinforcement Learning with Human Feedback—, autoregres-
sively over vast amounts of information typically crawled from the Web (Tou-
vron et al., 2023; OpenAI, 2024). With a seemingly always-increasing hype for
the applicability of LLMs, which has already shown state-of-the-art performance
in several tasks (Radford et al., 2019; Si et al., 2023), come also their studied
drawbacks (Dodge et al., 2021; Sainz et al., 2023). Beyond the issues with fea-
sibility for making the construction of these vast models reproducible outside
of very few dedicated environments, and the implications of commercial-only
availability of closed LLMs (Jacovi et al., 2023), there is also a series of interests
for understanding its intricacies and challenges for its expected usability (Elazar
et al., 2024; Anwar et al., 2024). An intertwined kind of phenomena are the
hallucinations that characterize most of the well-known LLMs. These are partic-
ularly crucial in applications where there is a need for ensuring the truthfulness
of the textual content generated by an LLM (Liu et al., 2023; Menick et al.,
2022). A paradigmatic task with these needs is Question Answering (QA), when
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it is instantiated in a way that also requires from an answering method to pro-
vide evidence that supports the obtained answer (Bohnet et al., 2022). This
work addresses Self-supported Question Answering (SQA) (Menick et al., 2022),
a problem where the answer to an input question must be complemented with
one or more pointers to textual excerpts from a given collection as supporting
references. SQA is related to several other similar tasks (Asai et al., 2022; Liu
et al., 2023).

Arguably, SQA contributes to model interpretability, as just like interpretabil-
ity, evidence helps increase trust in the outputs of a model (Menick et al.,
2022). Moreover, by providing references with its responses, the model is im-
plictely attempting to explain the rationale behind the answers. We approach
SQA via Retrieval-augmented Generation (RAG) (Lewis et al., 2020), a general
framework that suits well the scenario where the parametric knowledge of an
LLM should be complemented with explicit knowledge. RAG allows for this by
integrating selected contexts by retrieval to the text generator at prompting,
with which achieves state of the art in evidence-aware QA (Gao et al., 2023;
Garigliotti, 2024). Our experiments test methods within the RAG umbrella by
setting relevant parameters. Beyond implicit explainability, we focus in particu-
lar on explicit mechanisms to inquire the interpretation of the model’s rationales.

In the rest of the paper, we describe the dataset and approach we use in our
experimental setup, and then address our research questions by analyzing the
experimental results.

2 Approach

2.1 Methodology

Following a very recent benchmark in the literature Gao et al. (2023), we address
SQA via a series of methods all within the same general RAG paradigm (Lewis
et al., 2020). According to a particular configuration set for each of the parame-
ters of interest, the configuration corresponds to a specific ‘(SQA) method’ as we
refer to these. Each RAG-based SQA method is made of the same three distin-
guished components. Firstly, retrieval obtains relevant contexts or passages for
a question, from a given collection. After that, the passages are integrated into a
well-engineered prompt that also contains the question and, possibly, examples
for few-shot prediction. Finally, the generation stage takes the prompt as input
for an LLM to generate the desired answer with evidence.
We carry out the designed experiments aiming to answer these research ques-
tions:

– RQ1: How do the explicit interpretability mechanisms impact the perfor-
mance of the LLM-powered RAG approach for SQA?

– RQ2: What is the relation between self-interpretation inquiry and the zero-
or few-shot strategies augmented in prompt?

– RQ3: How does the awareness about need for interpretability prompted
alongside the question affect the performance on SQA when the passages
are provided in non-standard orders in the prompt?
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2.2 Experimental Setup

Dataset. QAMPARI (Amouyal et al., 2023) is a publicly available QA dataset
based on Wikipedia as corpus. Each question in QAMPARI requires as answer a
list of entities that occur in passages to the question. Also following the bench-
mark (Gao et al., 2023), we randomly select 60 questions from QAMPARI, and
refer to these as our QAMPARI instances. For an instance to be selected, it must
have at least one of its possibly multiple correct answers occurring in the top 3
ranked passages obtained with dense retrieval in the benchmark.

RAG components. In retrieval phase, we index a collection of passages from
the benchmark associated to all the selected 60 QAMPARI instances. Then, we
retrieve the top 10 passages for each question with a dense retrieval method, and
obtain the subsequences of top 3 and top 5 results to also experiment with. Dur-
ing augmentation, we instantiate a general prompt template with the actual
question and retrieved contexts, as well as one or more possible examples —each
made of a question, contexts and the correct answer with reference(s)— if not in
zero-shot mode. The basic prompt template —referred to as XAI-agnostic since
interpretability is only implicit in the request for evidence— is presented in Ta-
ble 1 (Garigliotti et al., 2024). In order to obtain an XAI-aware prompt, we first
enable the [XAI instr.] part by replacing it with the further instruction “You are
also asked about why you are giving this answer to the question. Please respond
to it right after.” We then obtain two variants of a XAI-aware prompt, a direct
one —where [XAI Q.] becomes “Why do you think that this is the answer to
the question?”— and a counterfactual one —by replacing [XAI Q.] with “What
would you have answered to the same question if the order of the passages in the
prompt was different?”—. In the final stage, generation, we input the prompt
into the GPT-3.5 (gpt-3.5-turbo-0125) LLM (Radford et al., 2019).
This list summarizes our experimental parameters:

– Retrieval: cut-off —top 3, 5, or 10 passages—.
– Augmentation: order of the passages in the prompt —as retrieved in rank-

ing, top ranked result goes last, or random—; number of few-shot examples
—0, 1, or 2—; and XAI prompting —basic, direct or counterfactual—.

Evaluation metrics. We evaluate answer correctness by verifying whether any of
the collected possible expressions of the correct answer is an exact sub-string of
the generation —answer recall or exact match recall, following (Stelmakh et al.,
2022)—. Answer support is evaluated by applying standard retrieval metrics of
precision and recall with respect to the retrieved and relevant passage sets. For
a given method, we report the average performance across all the questions.

3 Experimental Results

Tables 2, 3 and 4 present all our experimental results. Each table corresponds
to one of the XAI-oriented prompting strategies: basic or implicit, direct, and
counterfactual, resp.
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Table 1: Template to build the basic prompt during augmentation. The templates
for the XAI-aware prompts are almost identical except for the enabled XAI
components [XAI instr.] and [XAI Q.] omitted in the basic prompt.

Prompt template

You are an assistant for question-answering
tasks. Use the pieces of context provided by
the user to ANSWER the QUESTION to the
best of your ability. If you don’t know the an-
swer, just say that you don’t know. Keep the
answer concise. Always cite one or more corre-
sponding context IDs as your sources (which
must be among the given CONTEXTS) be-
tween square brackets (e.g. [a1b2x34d]), as it’s
done in each example. Examples are given be-
low, each example between the ’⟨example⟩’ and
’⟨/example⟩’ tags. After that, you are given the
actual question with contexts so that you an-
swer it. [XAI instr.]

Prompt template (ctd.)

⟨example⟩
...
⟨/example⟩
...

QUESTION: ...
[XAI Q.]

CONTEXTS:
Context ID: ...
Context: ...
...

ANSWER:

RQ1: In general, we observe a clear increase in the performance for several
methods in Table 2 when compared with its respective counterparts in Tables 3
and 4, especially in the few-shot scenarios. As a qualitative example, for the
question “Which FA Cup Final did Manchester United win?” a basic method
that prompts with the top of its 5 retrieved passages at the bottom, while doing
1-example shot, answers “1990”, while its XAI-direct counterpart correctly says
“1990 FA Cup Final.”

RQ2: The results are mixed. Some increments in the absolute performances for
the best measurements are observed across Tables 3 and 4.

RQ3: The awareness of being inquired about explaining its own mechanisms at
promting —i.e. question— time seems to influence variations in the best per-
forming methods, in terms of their characterization by the order of the passages
in their prompt. In particular, our last XAI-explicit prompt, counterfactual,
challenges an alternative scenario not necessarily about which the question or
answer was or could be, but rather about the augmentation strategy itself.

4 Conclusion and Future Work

We have studied strategies of self-interpretation for an LLM within the general
RAG framework for a series of configured methods, as a mechanism to make
operational an explicit explainability of the rationales behind answering ques-
tions with evidence. In future work, we plan to study other possible strategies
for interpretability in SQA, such as example-based XAI. Another aspect to work
further in is the evaluation of these observed strategies. A third line of future
investigation deals with extending the space of choices for selected parameters,
such as the actual LLM used in a framework like RAG and experimenting with
more advanced RAG-based approaches. Finally, an additional aspect to analyze
the experimental results in terms of question types from the dataset here used.
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Table 2: Experimental results over the QAMPARI instances, for the basic prompt
(i.e. without XAI component). In all these experiments, retrieval method is
dense, and the generator LLM is GPT-3.5. In each block of this table, the best
performance on a metric is shown in bold.

Number of few-shot examples in prompt: zero
Retrieval

cutoff
Passage
order

Answer
Recall

Citation
Precision

Citation
Recall

Citation
F-score

3
As in ranking 0.5717 0.7861 0.6833 0.71
Top result last 0.555 0.8167 0.6972 0.7306
Random 0.5083 0.7528 0.6417 0.6711

5
As in ranking 0.4731 0.7542 0.5261 0.5875
Top result last 0.4352 0.7083 0.4942 0.5506
Random 0.4713 0.75 0.5428 0.5932

10
As in ranking 0.3887 0.775 0.4167 0.4946
Top result last 0.3396 0.7189 0.3764 0.4521
Random 0.3679 0.7208 0.385 0.458

Number of few-shot examples in prompt: one
Retrieval

cutoff
Passage
order

Answer
Recall

Citation
Precision

Citation
Recall

Citation
F-score

3
As in ranking 0.4917 0.7194 0.6389 0.6517
Top result last 0.45 0.7444 0.65 0.6739
Random 0.4517 0.6611 0.5917 0.6

5
As in ranking 0.4196 0.7117 0.4956 0.5461
Top result last 0.3088 0.6208 0.4114 0.4659
Random 0.3852 0.7417 0.4872 0.5522

10
As in ranking 0.3565 0.7353 0.43 0.4842
Top result last 0.2853 0.6642 0.3378 0.4052
Random 0.3114 0.7356 0.3959 0.4587

Number of few-shot examples in prompt: two
Retrieval

cutoff
Passage
order

Answer
Recall

Citation
Precision

Citation
Recall

Citation
F-score

3
As in ranking 0.5067 0.6417 0.6111 0.5961
Top result last 0.5372 0.7736 0.7 0.7026
Random 0.5408 0.7389 0.7361 0.7206

5
As in ranking 0.4596 0.7056 0.5425 0.5882
Top result last 0.4254 0.7167 0.5464 0.5912
Random 0.4018 0.6403 0.4956 0.5186

10
As in ranking 0.4085 0.7303 0.4706 0.5193
Top result last 0.3601 0.6611 0.3717 0.441
Random 0.3393 0.6315 0.3795 0.4276
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Table 3: Experimental results over the QAMPARI instances, for the direct XAI-
aware prompt. In all these experiments, retrieval method is dense, and the gen-
erator LLM is GPT-3.5. In each block of this table, the best performance on a
metric is shown in bold.

Number of few-shot examples in prompt: zero
Retrieval

cutoff
Passage
order

Answer
Recall

Citation
Precision

Citation
Recall

Citation
F-score

3
As in ranking 0.5528 0.7444 0.6417 0.6683
Top result last 0.5106 0.7583 0.65 0.6772
Random 0.5306 0.7583 0.6333 0.6661

5
As in ranking 0.4717 0.7242 0.5108 0.5586
Top result last 0.496 0.7111 0.4747 0.5406
Random 0.4815 0.7417 0.5183 0.5756

10
As in ranking 0.4332 0.7583 0.4094 0.4931
Top result last 0.3915 0.7514 0.4037 0.4799
Random 0.4037 0.7417 0.3932 0.4709

Number of few-shot examples in prompt: one
Retrieval

cutoff
Passage
order

Answer
Recall

Citation
Precision

Citation
Recall

Citation
F-score

3
As in ranking 0.57 0.7361 0.6306 0.6578
Top result last 0.4967 0.7278 0.6194 0.6417
Random 0.555 0.7483 0.6472 0.6706

5
As in ranking 0.4439 0.7292 0.5011 0.5657
Top result last 0.4171 0.6861 0.4858 0.5384
Random 0.449 0.745 0.54 0.5811

10
As in ranking 0.3737 0.7117 0.3912 0.4558
Top result last 0.3472 0.7611 0.3781 0.4554
Random 0.392 0.6808 0.3774 0.4402

Number of few-shot examples in prompt: two
Retrieval

cutoff
Passage
order

Answer
Recall

Citation
Precision

Citation
Recall

Citation
F-score

3
As in ranking 0.5439 0.7083 0.6472 0.655
Top result last 0.58 0.7472 0.675 0.6911
Random 0.6106 0.8056 0.7306 0.7417

5
As in ranking 0.4833 0.735 0.5497 0.5969
Top result last 0.4699 0.7556 0.5344 0.5933
Random 0.4421 0.7389 0.5414 0.5943

10
As in ranking 0.4195 0.7694 0.467 0.5334
Top result last 0.3812 0.7292 0.4104 0.4779
Random 0.3854 0.7322 0.4139 0.4808
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Table 4: Experimental results over the QAMPARI instances, for the counterfac-
tual XAI-aware prompt. In all these experiments, retrieval method is dense, and
the generator LLM is GPT-3.5. In each block of this table, the best performance
on a metric is shown in bold.

Number of few-shot examples in prompt: zero
Retrieval

cutoff
Passage
order

Answer
Recall

Citation
Precision

Citation
Recall

Citation
F-score

3
As in ranking 0.5467 0.7444 0.6611 0.68
Top result last 0.555 0.75 0.6667 0.6828
Random 0.505 0.7583 0.65 0.68

5
As in ranking 0.5022 0.7542 0.5331 0.5892
Top result last 0.481 0.7194 0.4933 0.5502
Random 0.4796 0.73 0.5289 0.5759

10
As in ranking 0.4387 0.7806 0.4584 0.5292
Top result last 0.3551 0.6764 0.3509 0.4252
Random 0.3482 0.7211 0.41 0.4677

Number of few-shot examples in prompt: one
Retrieval

cutoff
Passage
order

Answer
Recall

Citation
Precision

Citation
Recall

Citation
F-score

3
As in ranking 0.5339 0.6972 0.6972 0.6656
Top result last 0.555 0.7944 0.7111 0.7217
Random 0.6078 0.8083 0.7639 0.7544

5
As in ranking 0.4369 0.6917 0.5664 0.5856
Top result last 0.4435 0.7375 0.5581 0.5925
Random 0.426 0.7611 0.5719 0.6133

10
As in ranking 0.4139 0.7667 0.48 0.5358
Top result last 0.3492 0.7403 0.4307 0.4935
Random 0.3821 0.7542 0.4287 0.5023

Number of few-shot examples in prompt: two
Retrieval

cutoff
Passage
order

Answer
Recall

Citation
Precision

Citation
Recall

Citation
F-score

3
As in ranking 0.5667 0.6722 0.7444 0.6817
Top result last 0.5633 0.7139 0.7778 0.7083
Random 0.6194 0.7361 0.8167 0.7394

5
As in ranking 0.5444 0.6656 0.6469 0.6211
Top result last 0.4796 0.7125 0.5831 0.613
Random 0.4963 0.7367 0.6608 0.6596

10
As in ranking 0.4568 0.7536 0.541 0.5897
Top result last 0.3835 0.5972 0.368 0.4105
Random 0.3895 0.7506 0.4392 0.5019
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