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Abstract
Given a Time Series Classifier (TSC) and three parameters that balance between error, simplicity and robustness,
we define an optimization problem over all possible ways of simplifying a given time series 𝑡𝑠 into straight-line
segments. Robustness is fixed as the fraction of perturbations that have the same classification as 𝑡𝑠 under the
TSC, and we introduce a novel method for generating a set of perturbations where this information is easy to
visualize. We prove that under some mild conditions on the TSC and the three parameters, we can find the
optimal solution in time polynomial in the length of 𝑡𝑠, by first doing dynamic programming to solve for error
and simplicity, and then adding robustness. We test the resulting Optimal Robust Simplification (ORS)-Algorithm
on binary TSCs for three datasets from UCR. We apply the ORS-Algorithm to prototypes of the classes, with
varying parameters, to evaluate its power as an explanatory tool for the trained classifiers. We also provide a tool
for visualizing the robustness information. We believe the resulting insights show the usefulness of the Optimal
Robust Simplifications in explaining TSCs.
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1. Introduction

Temporal data is encountered in many real-world applications ranging from patient data in healthcare
[1] to the field of cyber security [2]. Deep learning methods have been successful [3, 1, 2] for TSC -
Time Series Classification - but such methods are not easily interpretable, and often viewed as black
boxes, which limits their applications when user trust in the decision process is crucial. To enable the
analysis of these black-box models we revert to post-hoc interpretability. Recent research has focused on
adapting existing methods to time series, both specific methods like SHAP-LIME [4], Saliency Methods
[5] and Counterfactuals [6], and also combinations of these [7].

As humans learn and reason by forming mental representations of concepts based on examples,
and any machine learning model has been trained on data, then we believe that data e.g. in the form
of prototypes and counterfactuals is indeed the natural common language between the user and this
model. However, the basic problem is that compared to images and text, time series data are not
intuitively understandable to humans [8]. This makes interpretability of time series extra demanding,
both when it comes to understanding how users will react to the provided explanations and to predict
what explanatory tools are best. For example, in [9] a tool was given for explainability of a TSC, that
allowed model inspection so the user could form their own mental model of the classifier. However, a
user evaluation showed that non-expert end-users were not able to make use of this freedom, supporting
the notion that time-series are particularly non-intuitive for humans.

Theissler et al [10] give an intriguing taxonomy of XAI for TSC, divided into those focused on (i)
Time-points (e.g. SHAP and LIME) or (ii) Subsequences (e.g. Shapelets) or (iii) Instances (Prototypes,
CF, Feature-based). Explaining a classifier by instances like prototypes has a definite appeal, but it
is a challenge how to highlight the features important for the classification, while at the same time
simplifying the instance to mitigate the non-intuitive aspects of this domain, as we attempt in this
work. Theissler et al [10] review the literature on XAI for TSC and of the 9 papers they discuss on
Instance-based explanations using Prototypes or Features, it is remarkable that not a single one is
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specialized for Local explanations, rather they are all Global. In this work we fill this gap, and introduce
a way of simplifying a time series by straight-line segments, and doing this in a way that is robust with
respect to the classification of a given TSC ℎ.1 Our ORS-algorithm, for Optimal Robust Simplifications, is
model-agnostic, with robustness of a simplification being the fraction of local perturbations that retains
the classification under TSC ℎ. There are various ways of perturbing times series, see e.g. [11, 12, 13]. In
this work we develop a different method of computing a set of perturbations, both since we start with a
simplification on straight-line segments and also because we want the aggregate information about
their classifications to be visualized in an informative way. When computing robustness we start with a
straight-line simplification, and any perturbation must to a certain degree keep that position and shape,
while it is also allowed to deviate as the perturbation moves inside a band around the simplification, see
Figure 8.

The ORS-Algorithm computing a robust simplification 𝑠𝑡𝑠 of a given times series 𝑡𝑠, under a TSC ℎ,
has three parameters that allows to balance between error (Squared Euclidean distance between 𝑡𝑠 and
𝑠𝑡𝑠), simplicity (number of segments of 𝑠𝑡𝑠), and robustness (what fraction of perturbations of 𝑠𝑡𝑠 have
same classification as 𝑡𝑠 by ℎ), and 𝑠𝑡𝑠 is defined as the minimization over an objective function taking
all this into account, see Definition 1. Perhaps surprisingly, in Theorem 4 we show that under some mild
conditions on ℎ and the three parameters, we can find the optimal solution in time polynomial in the
length of the original time series 𝑡𝑠, by first solving for error and simplicity, and then adding robustness.
Note that our algorithm allows not only the balance between error, simplicity and robustness to change,
but also their computation, i.e. the algorithm is agnostic to the particular methods used to calculate
these values. Hence Squared Euclidean distance can be replaced by some other distance function as long
as it is amenable to the dynamic programming, simplicity can depend on other aspects than number of
segments, and robustness can be computed by other types of perturbations.

In the rest of this paper we first discuss related work and cover some standard definitions before
presenting the ORS-Algorithm together with proof of correctness and runtime. We then discuss the
usefulness of the robust simplifications, with a focus in this paper on time series that are discrete,
univariate, evenly sampled, aperiodic, short, and non-stationary, based on UCR datasets Chinatown,
Italy Power Demand and ECG200. We also provide an aid to visualize the robustness information. Our
findings suggest that the robust simplifications of a prototype 𝑡𝑠 can be used to extract explanations of
the classification done by the TSC, as they simplify 𝑡𝑠 to the point where human intuition can more
easily be applied. We conclude the paper by discussing some directions for future work.

2. Related Work

Several techniques have been applied to generate explanations from TSC models [10, 14]. Specifically,
techniques previously used on Convolutional Neural Networks or Recurrent Neural Networks have
been applied when these techniques have been used for TSC. For instance, the authors in [7] apply
to time series several XAI methods previously used on image and text domain. They also introduce
verification techniques specific to times series, in particular a perturbation analysis and a sequence
evaluation. Related to the datasets used in our paper, [15] presents a user study of XAI methods to
explain the ECG200 dataset from UCR.

Another alternative is to produce explanations through examples, and these can be specifically
utilized in the time series domain. One type of this explanation method involves giving the nearest
example from the training dataset that acts as a prototype to depict the normal behavior of a similar
sample [16]. A method to generate prototypes for time series data using an autoencoder is presented in
[17]. The main novelty of the work is the method to generate diverse prototypes.

Given that in many cases raw time series can be too complex for humans, several studies have tried
to employ simplified versions as explanations. In [18], the authors propose a dimensionality reduction
technique for time series, called Piecewise Aggregate Approximation, as a tool for similarity search

1Note that if one pieces together several such local explanations, say for prototypes of each class, then this can still form a
global explanation of the given TSC ℎ.



in large time series databases. The work [19] presents a review of piecewise linear approximations
employed for time series data, and the authors also propose a method named SWAB (based on the
Sliding Window and Bottom-up approaches). Finally, in [20] Camponogara and Nazari introduce a range
of piecewise-linear models and algorithms for unknown functions. Another option is to segment time
series into fixed-width windows and employ these to justify decisions. In [21] Schlegel et al propose
TS-MULE, a model explanation method working to segment and perturb time series data and extending
LIME. A study on the effect of segmentation on time series, in particular in the field of finance for the
use of pattern matching was presented in [22]. In [23], Si and Yin also apply segmentation to financial
time series data, now as a preprocessing step to locate technical patterns.

Perturbations have also been previously employed for XAI and time series. In [11], the authors
propose a framework to generate explanations for time series classifications based on a generative
model to create with-in-distribution perturbations. Enguehard, in [12], introduces a technique to explain
multivariate time series predictions using a perturbation-based saliency method. Recently, the approach
ContraLSP has been detailed in [13]. This method is based on a locally sparse model that produces
counterfactual samples to build uninformative perturbations but keeps distribution using contrastive
learning.

Some tools have been proposed to allow users to interact with time series and, in that way, to get some
insights about their classification, like [24] where model inspection is the key aspect. In [25], the authors
develop an interactive XAI tool for loan applications that allows users to experiment with hypothetical
input values and inspect their effect on the outcomes of the model and perform a user evaluation on
MTurk. [26] presents a Python package to provide a unified interface for the interpretation of time
series classification.

Some papers have developed a similar approach to our proposal. Im [27], Tang et al. presents the
method Dual Prototypical Shapelet Networks (DPSN) for few-shot time-series classification. This
method trains a neural network from few examples and also interprets the model from two levels of
granularity: a global overview with representative time series examples, and local highlights with
discriminative shapelets. Another related paper for sequence learning is [28]. The work proposes
ProSeNet a RNN-based method for deep sequence modeling. The approach combines prototype learning
and RNNs to construct models with high accuracy and interpretability. The method considers three
criteria in constructing prototypes: Simplicity, the prototypes can be subsequences with only the key
events determining the output; Diversity, redundant prototypes should be avoided; Sparsity, for each
example to explain only a few prototypes are shown to avoid long explanations. The authors show the
validity of ProSeNet for time series using the MIT-BIH Arrhythmia ECG dataset.

3. Standard definitions

Let us present formal definitions for Time Series Classification (TSC) and recall basic notions.
Staying consistent with earlier notation [10, 6] a time series 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑚} is an ordered set of

𝑚 real-valued observations (or time steps). Note we may also view each 𝑡𝑖 as a pair consisting of an
𝑥-value (the time) and a 𝑦-value (the observation). A time series dataset 𝐷 = {𝑇1, 𝑇2, ..., 𝑇𝑛} ∈ 𝑅𝑛×𝑚

is a collection of such time series where each time series has a class label 𝑐 forming a vector of class
labels. In this paper we consider only binary classification tasks. Given such a dataset, Time Series
Classification is the task of training a mapping 𝑏 from the space of possible inputs to a probability
distribution over the class values. Thus, a black-box classifier 𝑏(𝑇 ) takes a time series 𝑇 as input and
predicts a probability output over the class values.

Prototypes are time series exemplifying the main aspects responsible for a classifier’s specific decision
outcome. It can be a real instance (which is what we opt for) sampled from the dataset that is important
and meaningful because it summarizes the shape of many other similar instances, or a synthetic one,
for example a cluster centroid or an instance generated by following some ad-hoc processes.



4. An Algorithm for Optimal Robust Simplifications

In this section we give the ORS-Algorithm that takes a binary Time Series Classifier ℎ and a univariate
times series 𝑡𝑠, on 𝑛 points 𝑝1, ..., 𝑝𝑛 given by increasing 𝑥-values, and computes the optimal robust
simplification 𝑜𝑝𝑡𝑠𝑖𝑚𝑝(𝑡𝑠, ℎ, 𝛼, 𝛽, 𝛾), where 𝛼, 𝛽, 𝛾 are factors freely chosen to balance between error,
simplicity and robustness. This simplification will select 𝑘 + 1 of the 𝑛 points 𝑝𝑖1 , 𝑝𝑖2 , ..., 𝑝𝑖𝑘+1

with
𝑖𝑗 < 𝑖𝑗+1,∀𝑗 to form a simplified time series 𝑠𝑡𝑠 on 𝑘 segments by drawing a line between each
consecutive pairs of the 𝑘+ 1 points and by letting the first segment and the last segment extend to the
𝑥-values of 𝑝1 and 𝑝𝑛, respectively. See Figure 1.

Figure 1: Original time series 𝑡𝑠 in black, with selected points given by 6 grey circles, resulting in a simplification
𝑠𝑡𝑠 in red with 5 segments.

Definition 1. We define 𝑜𝑝𝑡𝑠𝑖𝑚𝑝(𝑡𝑠, ℎ, 𝛼, 𝛽, 𝛾) formally as the minimum, over all 2𝑛 − 𝑛− 1 possible
choices of 2 ≤ 𝑘 ≤ 𝑛 points that give a simplification 𝑠𝑡𝑠 with ℎ(𝑡𝑠) = ℎ(𝑠𝑡𝑠), of the value

𝛼 · 𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠) + 𝛽 · 𝑘𝑠𝑡𝑠 + 𝛾 · 𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠, ℎ)

comparing the original time series 𝑡𝑠 and the simplification 𝑠𝑡𝑠 on 𝑘𝑠𝑡𝑠 = 𝑘 − 1 segments defined by
these 𝑘 points.

The optimal simplification thus reflects a selected balance of error, simplicity and robustness achieved
by freely choosing the 3 factors 𝛼, 𝛽, 𝛾:

• 𝛼 for error: 𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠) is Squared Euclidean distance between 𝑡𝑠 and 𝑠𝑡𝑠, i.e. the sum over all
𝑥-values, of the square of the difference between the corresponding 𝑦-value of 𝑡𝑠 and 𝑠𝑡𝑠.

• 𝛽 for simplicity: 𝑘𝑠𝑡𝑠 is the number of segments
• 𝛾 for robustness: 𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠, ℎ) is a measure of how robust the classifier ℎ is on perturbations

of 𝑠𝑡𝑠, measured by the fraction of perturbations that do not fall in the same class as 𝑡𝑠, thus
in the range [0, 1] with 0 being most robust (𝑓𝑟𝑎𝑔 is short for fragility and can be viewed as
(1-robustness))

Perhaps surprisingly, under some mild assumptions this complicated objective function still allows
an algorithm that finds the optimal in time polynomial in 𝑛. In this section we describe this algorithm
in detail.



4.1. If no robustness: Dynamic Programming

We first solve the case of 𝛾 = 0, i.e. without giving any weight to robustness. Firstly, Least Squares is a
foundational problem in statistics and numerical analysis, given points 𝑝1, 𝑝2, ..., 𝑝𝑛 in the plane find
the straight line that minimizes the squared error. In the more general Segmented Least Squares (SLS)
problem we ask for a sequence of straight-line segments that minimizes cost, which is some balance of
error and simplicity (number of segments). The SLS problem is famously solvable in polynomial time
by a textbook Dynamic Programming Algorithm based on the following recurrence for 𝑂𝑃𝑇 (𝑗), the
minimum cost for points 𝑝1, ..., 𝑝𝑗 :

𝑂𝑃𝑇 (𝑗) =

{︃
0, if 𝑗 = 0

min1≤𝑖≤𝑗{𝑙𝑠𝑒(𝑖, 𝑗) + 𝛽 +𝑂𝑃𝑇 (𝑖− 1)} else

where 𝑙𝑠𝑒(𝑖, 𝑗) is the least square error over all single lines that cover 𝑝𝑖 to 𝑝𝑗 , and 𝛽 is the the cost
of one extra segment, with value of 𝛽 chosen to balance between error and simplicity. This problem
formulation differs from our setting in 3 important ways:

• We want a continuous set of segments, with each segment starting and ending in given points.
• We want the first (resp. last) segment to be defined by any two points 𝑝𝑖, 𝑝𝑗 and the line drawn

between them continued until it hits the 𝑥-value of 𝑝1 (resp. of 𝑝𝑛).
• We want robustness to perturbations as part of the objective function.

The first two differences are relatively easy to accommodate, as follows:

𝑂𝑃𝑇 (𝑗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 𝑗 = 0

min1≤𝑖≤𝑗{[𝛼 · 𝑒𝑟𝑟(𝑖, 𝑗) + 𝛽 +𝑂𝑃𝑇 (𝑖)], [𝛼 · 𝑒𝑟𝑟(1, 𝑖, 𝑗) + 𝛽]} if 𝑗 < 𝑛

min1≤𝑖≤𝑛min𝑖+1≤𝑘≤𝑛{[𝛼 · 𝑒𝑟𝑟(𝑖, 𝑘, 𝑛) + 𝛽 +𝑂𝑃𝑇 (𝑖)],

[𝛼 · 𝑒𝑟𝑟(1, 𝑖, 𝑘, 𝑛) + 𝛽]} if 𝑗 = 𝑛

where

• 𝑒𝑟𝑟(𝑖, 𝑗) is the Squared Euclidean distance between the straight line from 𝑝𝑖 to 𝑝𝑗 and the part of
the original time series 𝑡𝑠 given by points 𝑝𝑖, ..., 𝑝𝑗

• 𝑒𝑟𝑟(𝑖, 𝑗, 𝑛) is the same except the straight line continues past 𝑝𝑗 to the 𝑥-value of 𝑝𝑛 and we
compare to the final part of 𝑡𝑠 given by 𝑝𝑖, ..., 𝑝𝑛

• 𝑒𝑟𝑟(1, 𝑖, 𝑗) is similar as above except the line continues in the other direction to the 𝑥-value of 𝑝1
and we compare to the initial part of 𝑡𝑠 𝑝1, ..., 𝑝𝑗

• 𝑒𝑟𝑟(1, 𝑖, 𝑗, 𝑛) compares 𝑡𝑠 to a single line covering all 𝑥-values and going through points 𝑝𝑖, 𝑝𝑗

For the case of 𝑜𝑝𝑡𝑠𝑖𝑚𝑝(𝑡𝑠, ℎ, 𝛼, 𝛽, 𝛾) where 𝛾 = 0 i.e. where robustness does not play a part, the
argument for correctness of the above recurrence is similar to the textbook argument for correctness of
the recurrence of SLS, so we do not repeat it here, except to note the new parts being that

• We use 𝑂𝑃𝑇 (𝑖) rather than 𝑂𝑃𝑇 (𝑖− 1) since now for two consecutive segments the endpoint
of the first is the startpoint of the next.

• When defining 𝑂𝑃𝑇 (𝑗) we use 𝑒𝑟𝑟(1, 𝑖, 𝑗) so first segment can end in 𝑗
• When defining 𝑂𝑃𝑇 (𝑛) we use 𝑒𝑟𝑟(𝑖, 𝑘, 𝑛) so last segment can choose any pair 𝑝𝑖, 𝑝𝑘, and
𝑒𝑟𝑟(1, 𝑖, 𝑘, 𝑛) to allow simplification with a single segment.

Transforming this recurrence into a dynamic programming algorithm is straightforward, by first
computing each of the 𝑂(𝑛2) error terms in time 𝑂(𝑛) each, followed by a nested loop computing the
𝑛 𝑂𝑃𝑇 (𝑗) values in 𝑂(𝑛) time each. Retrieving the optimal solution is done by a second pass over the
values stored, also standard. This gives the following result.

Theorem 1. Given a time series 𝑡𝑠 of length 𝑛, a binary TSC ℎ, and factors 𝛼, 𝛽, 𝛾 that balance between
error, simplicity and robustness. For the case of 𝛾 = 0 (no robustness) we can compute the optimal simplifi-
cation achieving the minimum 𝑜𝑝𝑡𝑠𝑖𝑚𝑝(𝑡𝑠, ℎ, 𝛼, 𝛽, 𝛾 = 0) in time 𝑂(𝑛3) by dynamic programming.



4.2. Accommodating Robustness: DP with Heaps

Dynamic programming relies on the property that an optimal solution to a larger problem consists of
optimal solutions to subproblems. Robustness depends on the TS Classifier ℎ and we cannot expect it to
satisfy this property, since its classification on only a part of a time series will not in general correspond
to its classification on the full time series. Thus, we cannot incorporate robustness as part of the DP
scheme. Instead, our algorithm for Optimal Robust Simplifications (ORS), the ORS-Algorithm, uses a
2-stage approach:

Stage 1 Use DP to compute a 2-dimensional table of size 𝑛 × 𝑞 that in cell 𝐷[𝑗, 𝑘] stores the 𝑘th least
costly simplification for the points 𝑝1, ..., 𝑝𝑗 of the input time series 𝑡𝑠, considering only error
and simplicity but not robustness, as in above DP.

Stage 2 Consider the 𝑞 least costly simplifications 𝑠𝑡𝑠1, ..., 𝑠𝑡𝑠𝑞 , ordered by non-decreasing cost under
error and simplicity as stored in 𝐷[𝑛, 1]..𝐷[𝑛, 𝑞] respectively. Compute robustness for any
simplification that ℎ classifies same as 𝑡𝑠.
The ORS-Algorithm then returns the simplification having lowest overall total cost, i.e. the 𝑠𝑡𝑠
minimizing the value of value of 𝛼 · 𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠) + 𝛽 · 𝑘𝑠𝑡𝑠 + 𝛾 · 𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠, ℎ)

Pseudo-code is given in the Appendix. We will here give a high-level explanation, but let us first
state the following formal result.

Theorem 2. Let the difference in cost between 𝑠𝑡𝑠1 and 𝑠𝑡𝑠𝑞 , as computed by Stage 1, be 𝑑. For any
value of 𝛾 ≤ 𝑑 the simplification returned by the ORS-Algorithm will then be an optimal one achieving
𝑜𝑝𝑡𝑠𝑖𝑚𝑝(𝑡𝑠, ℎ, 𝛼, 𝛽, 𝛾).

Proof 1. We prove the statement by contradiction. Let the simplification 𝑠𝑡𝑠 returned by the ORS-Algorithm
have 𝑘𝑠𝑡𝑠 segments and assume there is another simplification 𝑠𝑡𝑠′ with 𝑘𝑠𝑡𝑠′ segments such that

𝛼 · 𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠′) + 𝛽 · 𝑘𝑠𝑡𝑠′ + 𝛾 · 𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠′, ℎ) <

𝛼 · 𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠) + 𝛽 · 𝑘𝑠𝑡𝑠 + 𝛾 · 𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠, ℎ)

Since Stage 2 optimized this value over all simplifications 𝑠𝑡𝑠1, ..., 𝑠𝑡𝑠𝑞 we cannot have 𝑠𝑡𝑠′ among these,
and thus by the assumption in the statement of the theorem we have 𝛼 · 𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠′) + 𝛽 · 𝑘𝑠𝑡𝑠′ ≥
𝑑+ 𝛼 · 𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠1) + 𝛽 · 𝑘𝑠𝑡𝑠1 , with 𝑘𝑠𝑡𝑠1 the number of segments of 𝑠𝑡𝑠1. Thus we get

𝑑+ 𝛼 · 𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠1) + 𝛽 · 𝑘𝑠𝑡𝑠1 + 𝛾 · 𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠′, ℎ) <

𝛼 · 𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠) + 𝛽 · 𝑘𝑠𝑡𝑠 + 𝛾 · 𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠, ℎ) ≤

𝛼 · 𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠1) + 𝛽 · 𝑘𝑠𝑡𝑠1 + 𝛾 · 𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠1, ℎ)

with the latter inequality following since 𝑠𝑡𝑠 was the minimum over 𝑠𝑡𝑠1, ..., 𝑠𝑡𝑠𝑞 . Rearranging, this gives
𝑑 < 𝛾·𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠1, ℎ)−𝛾·𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠′, ℎ)+((𝛼·𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠1)+𝛽·𝑘𝑠𝑡𝑠1)−(𝛼·𝑒𝑟𝑟(𝑡𝑠, 𝑠𝑡𝑠1)+𝛽·𝑘𝑠𝑡𝑠1))
with the latter term being zero and thus

𝑑 < 𝛾 · (𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠, ℎ)− 𝑓𝑟𝑎𝑔(𝑡𝑠, 𝑠𝑡𝑠′, ℎ))

Note we have 𝑓𝑟𝑎𝑔(·) in the range [0, 1] which means the above implies that 𝛾 > 𝑑, contradicting the
assumption in the statement of the theorem. □



4.2.1. Important details of Stage 1.

We describe some key details of how to implement Stage 1, computing a table of size 𝑛× 𝑞 with 𝐷[𝑗, 𝑘]
storing the 𝑘th least costly simplification of points 𝑝1, ..., 𝑝𝑗 under error and simplicity only. The
difference to the earlier DP is that we compute not only the least costly but the 𝑞 least costly with
𝑞 > 1. After computing error terms we run an outer loop from 𝑗 = 1 to 𝑛 with two inner loops one
after the other. The first loop from 𝑖 = 1 to 𝑗 − 1 is similar to the previous DP, computing the cost
𝐷[𝑖, 1]+ 𝑒𝑟𝑟(𝑖, 𝑗) of having the last segment go from 𝑝𝑖 to 𝑝𝑗 , but now adding all these values to a heap
𝐻𝑗 . The second loop from 𝑘 = 1 to 𝑞 fills the 𝐷[𝑗, 𝑘] entries by extracting the minimum element from
𝐻𝑗 , say this element is 𝐷[𝑖, 𝑟] + 𝑒𝑟𝑟(𝑖, 𝑗), then first set 𝐷[𝑗, 𝑘] to this element, but most importantly
also add to the heap 𝐻𝑗 the new value 𝐷[𝑖, 𝑟 + 1] + 𝑒𝑟𝑟(𝑖, 𝑗) since the 𝑟 + 1st least costly solution
up to 𝑝𝑖 may be lower than many other solutions in the heap. For details, in particular regarding the
edge-cases which are cumbersome to implement properly, see the pseudo-code in the appendix.

4.2.2. Computing Robustness in Stage 2.

A simplified time series 𝑠𝑡𝑠 on 𝑘 segments is computed by choosing 𝑘 + 1 points 𝑝𝑖1 , ..., 𝑝𝑖𝑘+1
from

an original time series 𝑡𝑠 on points 𝑝1, ..., 𝑝𝑛. When computing the robustness of 𝑠𝑡𝑠 focus on the
following 𝑘 + 1 pivot points 𝑠1, 𝑝𝑖2 , ..., 𝑝𝑖𝑘 , 𝑠2 of 𝑠𝑡𝑠 (note the first and last may not be points of 𝑡𝑠)
where 𝑠1 (and 𝑠2) is the 𝑦-value of 𝑠𝑡𝑠 that corresponds to the smallest (and largest) 𝑥-value, where
smallest is same as 𝑥-value of 𝑝1 (and largest is same as 𝑥-value of 𝑝𝑛). In Figure 1 𝑠1 is the leftmost
circled point and 𝑠2 the rightmost circled point, at 𝑥-values 0 and 23 respectively. For these 𝑘 + 1 pivot
points of 𝑠𝑡𝑠 we allow an increase or decrease of its 𝑦-value by an 𝜖 which is 10% of the 𝑦-range of the
dataset the classifier ℎ was trained on, i.e. 𝜖 = 0.1 * (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) with 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 the maximum
and minimum 𝑦-value in this dataset.

We compute 10.000 random perturbations of 𝑠𝑡𝑠, each consisting of 𝑘 segments anchored at the
same 𝑥-values as the 𝑘 + 1 pivot points of 𝑠𝑡𝑠 but with the 𝑦-value of each pivot point shifted by an
amount drawn independently for the 𝑘 + 1 values uniformly at random in the range [−𝜖,+𝜖]. Thus
the perturbation will lie inside a band around 𝑠𝑡𝑠 of height 2 · 𝜖 at each pivot point. See Figure 2. We
then use ℎ to classify each of the perturbations, and define the 𝑓𝑟𝑎𝑔-value of 𝑠𝑡𝑠 as the fraction of the
10.000 random perturbations that have the opposite classification as 𝑡𝑠.

(a) 𝑓𝑟𝑎𝑔 = 0.45 blue.
Not robust.

(b) 𝑓𝑟𝑎𝑔 = 0.04 blue.
Very robust.

(c) 𝑓𝑟𝑎𝑔 = 0.02 red.
Very robust.

Figure 2: Visualizing robustness of the three simplified time series in dotted black lines. All perturbations consist
of straight-line segments that are forced to lie inside the colored band, with pivot points at same 𝑥-values as
the simplification, but different 𝑦-values. We compute several perturbations of 𝑠𝑡𝑠 by randomly altering the
𝑦-values of the 𝑘𝑠𝑡𝑠+1 pivot points inside the narrow band, e.g. in (b) 𝑠𝑡𝑠 in black has 5 segments and the 6 pivot
points of the perturbations are at 𝑥-values 0,5,9,13,18,24. Each perturbation is drawn with a color according to
its classification by the classifier ℎ. Thus if many have same color as 𝑡𝑠 then robustness is good (and 𝑓𝑟𝑎𝑔-value
low).

Theorem 3. The runtime of the ORS-ALgorithm is 𝑂(𝑛 ·max{𝑛2, 𝑞 log 𝑛}).



Proof 2. The initialization of error terms is 𝑂(𝑛3) as in the first DP version. We use binary heaps having
𝑂(log 𝑛) insertion and extraction operations. Then, for each of the 𝑛 values of 1 ≤ 𝑗 ≤ 𝑛 we have two
for-loops, one inserting at most 𝑛 values into heap 𝐻𝑗 (for time 𝑂(𝑛 log 𝑛)), and the other extracting and
inserting at most 𝑞 values of 𝐻𝑗 (for time 𝑂(𝑞 log 𝑛)). Note there are never more than 𝑛 elements in any
heap 𝐻𝑗 as the first loop never inserts more than 𝑛 elements and the latter loop extracts one element and
inserts at most one new element. This completes the proof.

Theorem 4. The optimal simplification 𝑜𝑝𝑡𝑠𝑖𝑚𝑝(𝑡𝑠, ℎ, 𝛼, 𝛽, 𝛾) can be computed in polynomial time for a
time series 𝑡𝑠 on 𝑛 points, a binary TSC ℎ, and balancing factors 𝛼, 𝛽, 𝛾, if there exists a constant 𝑐, such
that the difference is ≥ 𝛾 between the least costly simplification that does not take robustness into account
and the 𝑛𝑐th least costly one.

Proof 3. This follows from Theorems 2 and 3 by running the ORS Algorithm with 𝑞 = 𝑛𝑐.

5. Usefulness of the robust simplifications

We have implemented 2 the ORS-Algorithm and in this section we illustrate its use for explaining a Time
Series Classifier. The algorithm is designed for classifiers working on univariate discrete time series
with a binary classification. Moreover, we believe its use is more easily evaluated if the times series
are evenly sampled, aperiodic and non-stationary. However, it is important to note that apart from the
above constraints we did not want simple datasets where the binary classification is particularly easy
or could be described (e.g. by ourselves) in any straightforward way. Based on these criteria we have
chosen to focus on three datasets.

• From UCR [29]: Chinatown. This dataset shows the number of pedestrians on a street corner
of Chinatown in Melbourne over a 24-hour time period, and classifies these into Weekend and
Weekdays.

• From UCR [29]: ECG200. This dataset traces the electrical activity recorded in 96 time steps
during one heartbeat and classifies the time series into a normal heartbeat and a Myocardial
Infarction.

• From UCR [29]: Italy Power Demand. This dataset shows power demand in Italian households
over a 24-hour time period, and classifies these into Winter (October-March) and Summer (April-
September).

Figure 3: Six prototypes from Chinatown. Hard to make a rule-of-thumb.

2Available on Github: https://github.com/BrigtHaavardstun/kSimplification



Figure 4: Same six prototypes from Chinatown, now shown in dotted black lines, with robust simplifications
making it easier to extract a rule-of-thumb.

For each of these datasets we trained a fully convolutional neural network (FCN), originally proposed
by Wang et al. [30]. Specifically we implemented a model closely following the work by Delaney et al.
[6]. To select prototypes we used SPOTGreedy by Gurumoorthy et al. [31], implemented in the python
package InterpretML[32]. We then ran the robust simplification algorithm on the resulting prototypes,
with varying balancing factors, to evaluate their power as explanatory tools for the trained classifiers.
In this section we focus on three aspects of the robust simplifications to argue that they are helpful
explanations of the classifier model.

• Showing prototypes together with their simplifications is more informative than showing proto-
types only

• Varying the balance of error vs simplicity vs robustness will highlight different aspects of the
prototypes

• Extracting a rule for class membership from this information can give simple and powerful
explanations

We cover these aspects in separate subsections.

5.1. Simplifications are informative as explanations

5.1.1. Chinatown

For the Chinatown dataset we have computed 3 prototypes from each of the two classes, that we call Red
and Blue. These 6 prototypes are presented in Figure 3. From these prototypes only it seems difficult to
identify with any kind of certainty a rule-of-thumb that can be used to decide the classification of new
instances. On the next figure, Figure 4, we show a single simplification added to each of the prototypes.
These simplifications are chosen with a well-balanced mix of error, simplicity and robustness, choosing
each of 𝛼, 𝛽, 𝛾 in the mid-range of values 3 These simplifications function as explanations for the
classification of each of the prototypes, as they also incorporate the robustness to 10.000 perturbations,
and as such they allow a rule-of-thumb to be more readily guessed at. Looking at the first segment
of each of the robust simplifications it is striking that the blue slopes are quite sharply downwards,
whereas none of the red are. A natural guess is as follows:

• Rule-of-thumb for Chinatown classification: if the time series starts by a noticable downward
slope then it is Blue, otherwise Red

3Exact values used for parameters can be found on the github page. Here we only refer to them as Low-Mid-High to keep the
presentation simple.



(a) 11 segs: Mid 𝛼 - Low 𝛽 - Mid 𝛾 (b) 6 segs: Mid 𝛼 - Mid 𝛽 - Mid 𝛾

(c) 2 segs: Mid 𝛼 - High 𝛽 - Mid 𝛾 (d) 6 segs: Mid 𝛼 - Mid 𝛽 - High 𝛾

Figure 5: Prototype from Chinatown in black and four distinct simplifications of it in red. From (a) to (b) to
(c) we see that increasing the importance of simplicity from low to middle to high will decrease the number of
segments from 11 to 6 to 2, and increase the Euclidean distance. In (d) we see that increasing the importance
of robustness, when comparing to (b) which also has 6 segments, changes the slope of the first segment even
though this increases the Euclidean distance, which is significant information about the red classification.

(a) 4 segs: Mid 𝛼 - Mid 𝛽 - Mid 𝛾 (b) 5 segs: Mid 𝛼- Mid 𝛽 - High 𝛾

Figure 6: Prototype from ItalyPowerDemand in black and two distinct simplifications of it in blue. Note that
both have the same balancing factor for error and simplicity, but (a) has 4 segments while (b) has a higher factor
of robustness that yields 5 segments. Simplifying, we could say that a segment in (a) has been replaced by two
segments in (b) to give two peaks. This indicates that those two peaks at or around those 𝑥-values is important
for the robustness of the Blue classification.

5.2. Varying balancing factors

5.2.1. Chinatown

In Figure 5 we see the effect of varying the balancing factors for a Red prototype in the Chinatown
dataset. We see that increasing the importance of simplicity from low to middle to high will decrease
the number of segments, while naturally also increasing the Euclidean distance to the original time
series. We also see that increasing the importance of robustness changes the slope of the first segment
from slightly downward (in the other 6-segment simplification) to slightly upward. This means that



(a) 5 segs: Mid 𝛼 - Mid 𝛽 - Mid 𝛾 (b) 5 segs: Mid 𝛼 - Mid 𝛽 - High 𝛾

Figure 7: Prototype from ECG200 in black and two distinct simplifications of it in blue. Note that even though
the factor for robustness is much higher in (b) than (a), the two simplifications are almost identical (difference
being that in (a) the third segment ends in 𝑥 = 40 whereas in (b) it ends in 𝑥 = 39).

a higher percentage of time series with first segment having slightly downward slope in this vicinity
are classified as Blue, as compared to the percentage classified Blue having slightly upward slope. This
change is significant information, and it holds even in the presence of a higher Euclidean distance to the
original prototype. Note that this observation constitutes supporting evidence for the rule-of-thumb
guessed at previously for Chinatown.

5.2.2. Italy Power Demand

In Figure 6 we see a single prototype from ItalyPowerDemand in black and two robust simplifications
of it in blue. Both simplifications have the same balancing factor for error and simplicity, but (a) has 4
segments while (b) has 5 segments resulting from an increase in the factor for robustness. Simplifying,
we could say that a single segment in (a) has been replaced by two segments in (b) to give two peaks.
This indicates a rule-of-thumb for the classifier trained on ItalyPowerDemand, namely that two such
peaks at or around those 𝑥-values is important for the Blue classification.

5.2.3. ECG200

In Figure 7 we see a prototype from ECG200 in black and two distinct simplifications of it in blue. Note
that even though the factor for robustness is much higher in (b) than (a), the two simplifications are
(almost) identical, both on 5 segments. To explain this lack of significance of robustness we turn to
Theorem 2 which says that the difference between the best cost and 𝑞th best cost output by Stage 1 of
the ORS Algorithm, may limit the values of 𝛾 for which Stage 2 returns the optimal robust simplification.
For the simplifications of Figure 7 we ran Stage 1 with the high value of 𝑞 = 1.000.000 and found
this difference to be 0.03630-0.02884=0.00746. Thus by Theorem 2 the simplification in (a) may not
be optimal for that value of 𝛾 = 0.01 > 0.00746, whereas the one in (b) is likely not optimal, as
𝛾 = 0.1 >> 0.00746. Let us explain why we believe this happens. This time series has a length of
96, and note the DP to get 5 segments optimizes over all possible ways of choosing 6 points from 96.
Note that there are many such choices of 6 points that give 5 segments similar to the ones in Figure 7.
Counting the number of ways of choosing these 6 points, starting with the rightmost point and going
left, a back-of-the-envelope calculation estimates this to be in the ballpark of 35*20*10*10*3*5 which
is over 1 million. Thus, we take this as evidence that almost all the 𝑞 best simplifications returned by
the dynamic programming of Stage 1, that do not take robustness into account, are very close to these
5 segments. Thus increasing the importance of robustness cannot help, as the result will always be a
simplification similar to the one given. We leave for future work to deal with such cases, for example
by a heuristic during the DP that discards simplifications that are only marginally different from others.



5.3. Evaluating a classification rule guessed from robust simplifications

5.3.1. Chinatown

For the Chinatown classification we made a rule-of-thumb based on information gathered from the
explanations of the classifications given for 6 prototypes, by means of the robust simplifications. To
check if this rule-of-thumb is actually useful we need to make it more specific. Looking at the values
on the 𝑦-axis for Figure 4 we see that the first segments of the 3 Blue simplifications are lines starting
at point (0, 500) and decreasing to about (5, 0) while the first segments of the Red simplifications are
only very slightly decreasing or increasing. Thus, the difference between the 𝑦-values at 𝑥 = 0 and
𝑥 = 5 would distinguish between these Red and Blue prototypes. We guess that this difference also
distinguishes between many other time series in the dataset, as this insight is gathered from the robust
simplifications. Taking the halfway point of 250 between the 𝑦-values of 500 and 0 as the cutoff the
simple classification rule becomes

• Simple Rule for Chinatown: if the 𝑦-value at 𝑥 = 0 minus the 𝑦-value at 𝑥 = 5 is larger than 250
then 𝑡𝑠 is classified Blue, otherwise Red

The Chinatown dataset has 363 time series. We checked their classification by the model and compared
to the Simple Rule. Indeed, the Simple Rule classifies all but 1 of the model-classified Blue time series as
Blue, and it classifies all but 19 of the Red time series as Red, for an accuracy of 94.5 %. Note this is
accuracy with respect to the model, not the ground truth, as the Simple Rule is trying to explain the
model. Let us mention that the accuracy of the model wrt ground truth is 96.4 %, while accuracy of the
simple rule wrt ground truth is 97 %.

Finally, let us also mention that if we raise the cutoff in the Simple Rule from 250 to 325 it actually
achieves an accuracy of 99.7 % (with accuracy of the simple rule vs ground truth down to 96.7%) failing
on only one instance. In retrospect, we could ask if there was any information available to us from the
robust simplifications that would point to this higher cutoff. In fact, consider Figure 5 (a) that visualizes
the robustness of a simplification whose first segment goes from (0, 400) to (7, 50). Note the red part of
the band around the first segment stretches up above (0, 250). This should have made us wonder if the
cutoff for the simple rule should be higher than 250. We could have made a test of this, for example by
constructing a time series whose first segment goes from (0, 300) to (5, 0) and visualize its robustness.
See Figure 8, where we have done exactly this, and pay close attention to the colourings of the band
around the first segment. This band is predominantly blue down to somewhere above (0, 300), and
already then it turns red. This in itself could have made us guess a higher cutoff than 250 for the Simple
Rule. We believe these insights show the usefulness of the robust simplifications and their visualization.

5.3.2. ItalyPowerDemand

In the previous subsection we saw that two peaks in the mid-afternoon seemed to signify Blue class
for the classifier on the ItalyPowerDemand dataset. Looking more closely at Figure 6 we note that the
difference between the high part of the peaks and the low part is about 0.5. We also note from the
original prototype that the first peak is centered at 10, the second peak at 18, and that in (b) the bottom
of the simplification is centered at 14. From this we extract the following rule:

• Simple Rule for ItalyPowerDemand: let 𝑚𝑎𝑥1 = maximum of the 𝑦-values over 𝑥 = 9, 10, 11, let
𝑚𝑖𝑛2= minimum of the 𝑦-values over 𝑥 = 13, 14, 15 and 𝑚𝑎𝑥3 = maximum of the 𝑦-values over
𝑥 = 17, 18, 19. If 𝑚𝑎𝑥1−𝑚𝑖𝑛2 ≥ 0.5 and 𝑚𝑎𝑥3−𝑚𝑖𝑛2 ≥ 0.5 then classify this instance Blue,
else Red.

The dataset ItalyPowerDemand has 1096 time series. We checked their classification by the model
and compared to the Simple Rule. Indeed, the Simple Rule classifies all but 50 of the model-classified
Blue correctly, and all but 49 of the Red correctly, for an accuracy of 91%. Let us mention that accuracy
of the model wrt ground truth is 96.3%, and of the Simple Rule wrt Ground Truth 89.6%. Note that



Figure 8: Visualization of robustness of a time series starting at (0, 300) suggesting that a cutoff somewhat
higher than (0, 250) for Blue vs Red would have been a better guess for the Simple Rule for Chinatown.

classifiers of ItalyPowerDemand have previously been shown hard to explain to end-users [24]. Thus,
the Simple Rule, developed by examining the robust simplifications in Figure 6, has a surprisingly high
accuracy.

6. Conclusions and Future Work

In this paper, we addressed the challenge of interpretability in Time Series Classification (TSC) by
introducing the Optimal Robust Simplifications (ORS) algorithm. Our approach focuses on simplifying
time series data into straight-line segments while ensuring that these simplifications remain robust
with respect to the classifications made by a given TSC model.

Our ORS-Algorithm is model-agnostic and allows a balance between error (fidelity with respect to
the original instance), simplicity (complexity of the simplification), and robustness (fraction of local
perturbations that retain the correct classification). We prove that the ORS-Algorithm, under certain
mild conditions, finds the optimal solution in polynomial time, by a first dynamic programming stage
solving for error and simplicity, and then incorporating robustness into the solution. This simplification
process aids in making time series data more intuitive and interpretable for humans.

Our experimental results, based on UCR datasets Chinatown, Italy Power Demand, and ECG200,
confirm the practical utility of our approach. The robust simplifications provided by the ORS algorithm
make time series data more accessible to human intuition, facilitating better user understanding and
trust in the TSC models. In conclusion, our work contributes a novel method for enhancing the
interpretability of TSC models through robust simplifications.

Future research could explore other ways to compute the factors employed in the algorithm. For
instance, the squared Euclidean distance could be replaced by some other distance function, or simplicity
can depend on other aspects than only the number of segments, and robustness can be computed by
other types of perturbations. Finally, we plan to conduct experiments including human studies to
demonstrate empirically the benefits of using optimal robust simplifications to explain TSC models and
compare to related XAI methods.
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7. Appendix

7.1. Pseudo code for DP algorithm

Define a 2-dimensional DP table 𝐷[𝑗, 𝑝] that stores the 𝑝th least costly simplification for the points
𝑝1, ..., 𝑝𝑗 ending at 𝑝𝑗 . Set 𝐷[1, 1] = 0.
Compute all 𝐷[𝑗, 𝑝] for 𝑝 ≥ 1 as follows:
for 𝑗 = 1 to 𝑛− 1 do

Initialize an empty heap 𝐻𝑗 to store triples (value, index, rank) with value being the key.
for 𝑖 = 1 to 𝑗 − 1 do

𝐻𝑗 .add(𝛼 · 𝑒𝑟𝑟(𝑖, 𝑗) + 𝛽 +𝐷[𝑖, 1], 𝑖, 1)
if 𝑖 ̸= 1 then

𝐻𝑗 .add(𝛼 · 𝑒𝑟𝑟(1, 𝑖, 𝑗) + 𝛽, 𝑖,−1)
end if

end for
for 𝑝 = 1 to 𝑞 do

(𝑣𝑚, 𝑖𝑛𝑑𝑒𝑥𝑚, 𝑟𝑎𝑛𝑘𝑚) = 𝑝𝑜𝑝𝑚𝑖𝑛(𝐻𝑗)
𝐷[𝑗, 𝑝] = 𝑣𝑚
if 𝑟𝑎𝑛𝑘𝑚 ̸= −1 then

𝐻𝑗 .add(𝛼 · 𝑒𝑟𝑟(𝑖𝑛𝑑𝑒𝑥𝑚, 𝑗) + 𝛽 +𝐷[𝑖𝑛𝑑𝑒𝑥𝑚, 𝑟𝑎𝑛𝑘𝑚 + 1], 𝑖𝑛𝑑𝑒𝑥𝑚, 𝑟𝑎𝑛𝑘𝑚 + 1)
end if

end for
end for
To ensure that the last segment is not required to stop at 𝑝𝑛, but instead can be a continuation of two
other points 𝑝𝑖 and 𝑝𝑗 , go over all pairs of points and evaluate the error if we continue them to the
end.
Store these possibilities on a heap 𝐻𝑛 and extract the 𝑞 best, similar to what we did previously.
Initialize an empty heap 𝐻𝑛 to store quadruples (value, index, rank, end) with value being the key.
for 𝑗 = 1 to 𝑛 do

for 𝑖 = 1 to 𝑗 − 1 do
𝐻𝑛.add(𝛼 · 𝑒𝑟𝑟(𝑖, 𝑗, 𝑛) + 𝛽 +𝐷[𝑖, 1], 𝑖, 1, 𝑗)
if 𝑖 ̸= 1 then

𝐻𝑛.add(𝛼 · 𝑒𝑟𝑟(1, 𝑖, 𝑗, 𝑛) + 𝛽, 𝑖,−1, 𝑗)
end if

end for
end for
for 𝑝 = 1 to 𝑞 do

(𝑣𝑚, 𝑖𝑛𝑑𝑒𝑥𝑚, 𝑟𝑎𝑛𝑘𝑚, 𝑒𝑛𝑑𝑚) = 𝑝𝑜𝑝𝑚𝑖𝑛(𝐻𝑛)
𝐷[𝑛, 𝑝] = 𝑣𝑚
if 𝑟𝑎𝑛𝑘𝑚 ̸= −1 then

𝐻𝑛.add(𝛼 ·𝑒𝑟𝑟(𝑖𝑛𝑑𝑒𝑥𝑚, 𝑒𝑛𝑑𝑚, 𝑛)+𝛽+𝐷[𝑖𝑛𝑑𝑒𝑥𝑚, 𝑟𝑎𝑛𝑘𝑚+1], 𝑖𝑛𝑑𝑒𝑥𝑚, 𝑟𝑎𝑛𝑘𝑚+1, 𝑒𝑛𝑑𝑚)
end if

end for
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