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Abstract
With the consolidation of Large Language
Models (LLM) as a dominant component in ap-
proaches for multiple linguistic tasks, the inter-
est in these technologies has greatly increased
within a variety of areas and domains. A par-
ticular scenario of information needs where
to exploit these approaches is climate-aware
NLP. Paradigmatically, the vast manual labour
of inspecting long, heterogeneous documents
to find environment-relevant expressions and
claims suits well within a recently established
Retrieval-augmented Generation (RAG) frame-
work. In this paper, we tackle dual problems
within environment analysis dealing with the
common goal of detecting a Sustainable Devel-
opmental Goal (SDG) target being addressed
in a textual passage of an environmental as-
sessment report. We develop relevant test col-
lections, and propose and evaluate a series of
methods within the general RAG pipeline, in
order to assess the current capabilities of LLMs
for the tasks of SDG target evidence identifica-
tion and SDG target detection.

1 Introduction

A series of Sustainable Development Goals (SDGs)
were established by experts in the United Nations,
as a reference framework with respect to which
guide the progress of human activities, altogether
oriented to the common good (Del Campo et al.,
2020). According to their respective legal require-
ments, practitioners in the area of environmental
assessment (e.g., professional assessors, develop-
ers, authorities) have to incorporate this framework
in multiple spheres. In particular, the activities,
impacts and mitigation measures described in envi-
ronmental assessment documents are increasingly
required to report how they address one or more
SDGs; especially SDG targets, these being focused,
actionable subgoals within a given SDG. Identi-
fying textual passages relevant in addressing an
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Figure 1: The dual tasks that we address in this work:
SDG Evidence Identification and SDG Target Detection.

SDG target of interest then becomes a fundamental
problem in the practice of environmental assess-
ment. This problem naturally lends itself within
an approach based on obtaining an initial selection
of passage candidates, and then apply onto this a
more advanced detection technique to refine the
decisions about relevance to the target. The re-
cently established Retrieval-augmented Generation
(RAG) framework (Lewis et al., 2020) embraces
this basic approach and couples it with a text gen-
eration component powered by Large Language
Models (LLMs), the dominant technology in NLP
that shows state-of-the-art performance in multiple
tasks (Radford et al., 2019; Touvron et al., 2023).

Figure 1 depicts an overview of the two tasks that
we address in this work, with examples of SDG tar-
gets and excerpts of environmental impact assess-
ment (EIA) reports. Specifically, these dual tasks
couple with each other in the need of practitioners
in EIA for finding instances of correspondence be-
tween the information spaces of SDG targets and
textual evidence in specialized reports. We con-
tribute by developing a test collection for each of
these two tasks. We also propose and evaluate a
series of experimental configurations for each of
the RAG components, in order to assess the current
capabilities of LLMs for these paradigmatic tasks
in climate-aware NLP.

Our test collection and related resources
developed in this study are made publicly



available in a repository at https://bit.ly/
climatenlp-sdg-target-detection.

2 Related Work

Recently, the area of climate-aware natural lan-
guage processing has decisively emerged led by
a broad interest of developing information ac-
cess methods to strengthen awareness in phenom-
ena within climate change, as well as to process
climate-related data in specific tasks within this
domain. For example, Hershcovich et al. (2022)
introduce a climate performance model card to
summarize the impact of the experimentation cor-
responding to a scientific work in NLP research.
Some of the related literature focuses on design-
ing and analyzing methods for extracting climate-
centric information, for example, to answer ques-
tionnaires (Spokoyny et al., 2023) and to detect
climate-relevant claims in documents (Stammbach
et al., 2023). Works like the ones by Bingler et al.
(2022) and Schimanski et al. (2024) reveal the ca-
pabilities of well-established language models in
communicating around climate awareness. Other
lines of research in this area have produced fun-
damental resources, including language models
such as ClimateBert (Webersinke et al., 2022) and
ClimateGPT (Thulke et al., 2024), as well as sys-
tems like ChatClimate (Vaghefi et al., 2023) and re-
sources like EIA-centric ontologies (Nielsen et al.,
2023; Garigliotti et al., 2023), to power approaches
for a variety of tasks.

An ever-increasing dominant technology in NLP,
LLMs store vast amounts of information implicitly
in their of billions of parameters trained on large
general-purpose corpora, which allows them to per-
form as state of the art in many tasks such as text
classification, textual entailment and question an-
swering (QA) (Radford et al., 2019; Touvron et al.,
2023). Yet, for many domain-specific scenarios,
a framework like Retrieval-augmented Generation
(RAG) (Lewis et al., 2020) becomes convenient
as it allows to extend the LLM capabilities with
additional explicit knowledge as context where to
get the generated answer from. Moreover, against
frequent hallucinations, it useful to be able to ver-
ify that the claims that occur in a text generated by
such a model are truthful (Liu et al., 2023a; Menick
et al., 2022). Within the research on QA, a foun-
dational task for any application of LLMs, several
related problems such as attribution in question an-
swering (Bohnet et al., 2023), evidentiality-guided

generation (Asai et al., 2022), verifiability of gen-
eration (Liu et al., 2023a), and factuality in summa-
rization (Liu et al., 2023b) aim for operationalizing
such a verification.

In the tasks we address, we treat the input (an
SDG target in EI or an textual excerpt in TD) as a
question for which, after augmented with retrieved
items, an LLM must generate an answer with the
correct outputs (identifiers of report passages or
SDG targets, respectively) among the ones pro-
vided in the prompt.

3 Methodology

3.1 Problems

Given (i) an SDG target and (ii) a set of one or more
passages from environmental impact assessment
(EIA) reports, the task of SDG Target Evidence
Identification (or EI task) consists in determining
whether any of the passages is a relevant evidence
where the content of the target is addressed. We
instantiate this problem by requesting a method,
specifically an Large Language Model (LLM), to
generate an answer (to a question asking for decid-
ing which passage(s) are relevant) with the correct
passages, each referred to by a unique string identi-
fier also provided in the generation prompt.

We assume the dual task of detecting SDG tar-
gets in a passage to be defined as follows. Given (i)
a passage from an EIA report, and (ii) a set of one
or more SDG targets, the task of SDG Target Detec-
tion (or TD task) consists in determining whether
the content of any of the targets in the set is being
addressed in the passage. Similar to EI setting, we
request an LLM to generate an answer with the
correct targets, each referred to by a unique string
identifier provided in the prompt.

These two tasks together encompass an opera-
tionalization of typical dynamics in the practice
of environmental analysis where a professional as-
sessor aims to find correspondences between SDG
targets of interest and textual evidence in reports.

3.2 Approach

We approach each of these two tasks with a series
of methods within Retrieval-augmented Genera-
tion (RAG), a framework used, among others, by
relevant benchmark literature for question answer-
ing (Gao et al., 2023). Each method consists of
the same pipeline of three distinguished compo-
nents: (i) retrieval, which, for each input question
requested as query, produces a list of ranked pas-
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sages from the indexed passage collection; (ii) then,
augmentation, where each test instance made of
the question and (a subset of) retrieved passages
are aggregated in a well-designed prompt that also
captures the criteria of relevance to be required
for judgement to an LLM; and (iii) a third com-
ponent, the LLM-based generation of the answer
required for each instance. Within this RAG um-
brella framework, for example, for the problem of
SDG evidence identification (EI), the SDG target
becomes a query for which to identify relevant tex-
tual passages from a collection. Symmetrically, for
the problem of SDG target detection (TD), a textual
passage, or excerpt, is treated as a query for which
to find the SDG targets, if any, among selected suit-
able target candidates; these targets are “passages”
themselves within RAG since they are retrieved
—from an indexed collection as candidates— for
the input excerpt and subsequently post-processed
through the augmentation and generation stages.

We experiment with corresponding parameters
of interest on a vanilla setting of each component,
and evaluate all the respective performances. We
refer with ‘method’ to each instantiation of this
RAG-based approach in a particular parameter con-
figuration.

3.3 Research Questions

We conduct experimentation over the test collec-
tions with an ensemble of methods, in order to
answer the following research questions.

• RQ1: How do the retrieval component affect
the RAG performance?

• RQ2: What is the impact of the different aug-
mentation strategies?

• RQ3: How does RAG perform with each
LLM chosen for generation?

4 Experimental Setup

4.1 Datasets

The Ministry of Climate of the Republic of Estonia
has made publicly available a series of environmen-
tal reports corresponding to projects developed in
the country and other European countries nearby.1

We select 33 reports from this public website and
post-process their PDF files to obtain a collection of
passages, or contexts, as follows. First, the textual
content of each file is extracted with the PyMuPDF
1https://kliimaministeerium.ee/
piiriulene-moju-hindamine#piiriulese-moju-hind

Figure 2: The 30 selected SDG targets in our datasets.

tool 2. Then, further replacements in the text are
made for distinguished characters so that to trans-
form each sentence that is broken into multiple
lines as appearing in the PDF, and recover each
contiguous sentence. From these, we only retain
every sentence made of at least 5 words; this al-
lows to remove spurious content that is wrongly
processed as a valid sentence. Finally, we select
a random passage length (between 3 and 5 sen-
tences) for each page, and chunk the content of that
page into passages of that length, possibly with
shorter trailing passages. Each passage is assigned
a unique identifier, with respect to which is then in-
dexed during the first stage of the RAG framework
for the EI task. This identifier is the one requested
to be in the answer generated by an LLM to re-
fer to each passage that the LLM considers to be
relevant to the given SDG target. We use unique
random alphanumeric strings as identifiers aiming
to avoid allowing that the LLM may hallucinate
typical reference markers such as natural numbers
[1], [2], etc. The obtained collection comprises
16,474 passages.3

We also select 30 SDG targets, a considerable
subset of the 157 targets available within the SDG
framework. The selected targets are considered
more relevant to the kind of environmental assess-
ment practice of our interest, and so more likely
to be addressed in them. Specifically, each target
belongs to one of the following SDGs: Clean wa-
ter and sanitation (SDG 6), Affordable and clean

2https://pymupdf.readthedocs.io/en/latest/
3The full list of links to the PDF documents for
the reports, as well as the postprocessing of the
files into the final passage collection, are made pub-
licly available in our repository at https://bit.ly/
climatenlp-sdg-target-detection.

https://kliimaministeerium.ee/piiriulene-moju-hindamine#piiriulese-moju-hind
https://kliimaministeerium.ee/piiriulene-moju-hindamine#piiriulese-moju-hind
https://pymupdf.readthedocs.io/en/latest/
https://bit.ly/climatenlp-sdg-target-detection
https://bit.ly/climatenlp-sdg-target-detection


energy (SDG 7), Industry, innovation and infras-
tructure (SDG 9), Sustainable cities and communi-
ties (SDG 11), Responsible consumption and pro-
duction (SDG 12), Climate action (SDG 13), Life
below water (SDG 14), and Life on land (SDG
15). The full list of 30 selected SDG targets is pre-
sented in Fig. 2. After removing from it any of
the temporal phrases like “by 2030” that are com-
mon to most SDG targets, the textual description
of each of these selected targets becomes a pseudo-
document, a “passage” by itself. The collection of
these targets-as-passages is indexed, and retrieved
against, during the RAG retrieval stage for the TD
task. From the set of selected SDG targets and the
passage collection, we obtain a two datasets, each
per task, to evaluate the performance of our pro-
posed methods. The test collection for the evidence
identification task consists of manual annotations
for the “yes”/“no” binary relevance judgement of a
passage with respect to a target. The test collection
comprises the 30 SDG targets, each annotated for
6 passages (the top 3 retrieved contexts for each of
the two retrieval methods). Similarly, we build the
test collection for the target detection task, by man-
ually judging the binary relevance of a retrieved
target w.r.t. an excerpt, for 10 “passages” (the top 5
retrieved targets for each of the two retrieval meth-
ods).

Both test collections are also made publicly avail-
able in our repository.4

4.2 Experimental Parameters

Retrieval component. For the EI task, from the
index built to store the uniquely identified passages,
we retrieve the top 3 results for every SDG tar-
get with each of both methods, traditional lexical
matching (lexical, for short) and learned dense re-
trieval (dense, for short). For the TD task, we first
build an index of SDG targets as passages, after
each being assigned a random unique ID (this ID
“masks” the plain number.subnumber ID format, as
it is useful later for an augmentation configuration,
where the LLM will not be made aware that the
passages in the prompt are indeed SDG targets).
We then retrieve top 5 targets from this index per
each excerpt as query, again with both lexical and
dense methods. We perform retrieval with the well-
established library Pyserini.5

4https://bit.ly/climatenlp-sdg-target-detection
5https://github.com/castorini/pyserini

Prompt template
You are an assistant for tasks in environmental impact
assessment (EIA). A few excerpts from the textual con-
tent of EIA reports are provided by the user as contexts.
Please ANSWER the QUESTION about the possible
relevance of these contexts for the given Sustainable De-
velopment Goal (SDG) target. Please answer to the best
of your ability. If you don’t know the answer, just say
that you don’t know. Keep the answer concise. When
you refer to a context in your answer, always cite the cor-
responding context ID (which must be among the given
CONTEXTS) between square brackets (e.g. [a1b2x34d]),
as it’s done in each example. Examples are given below,
each example between the ‘<example>’ and ‘</example>’
tags. After that, you are given the actual SDG target with
contexts so that you answer about it.
⟨example⟩
...
⟨/example⟩
...
Now, your task.
CONTEXTS:
Context ID: ...
Context: ...
...
SDG TARGET: ...
QUESTION: Which one(s), if any, of the provided con-
text(s) is a relevant evidence where the SDG target is
addressed?
ANSWER:

Table 1: Template to build the prompt during augmenta-
tion (‘SDG-explicit’ version) for the EI task.

Augmentation component. Through prompt en-
gineering, we design a prompt that requests the
LLM to produce the answer mentioning the cor-
rect relevant passages in the desired format, which
explicitly requires to give a concise answer and
only if knowing it. Tables 1 and 2 show the ac-
tual prompt templates used for each task in one of
our experimental configurations, ‘SDG-explicit’,
where there is an explicit mention to the target be-
ing part of the SDG framework. The SDG-implicit
prompt version is obtained from the explicit one by
performing few replacements that mask an SDG
target (as query in the EI task; as passage in the
TD task) as being an environmental policy. For
example, the SDG-implicit prompt for EI task is
obtained from the prompt in Table 1 by replacing (i)
“Sustainable Development Goal (SDG) target” by
“environmental policy” in the prompt header, (ii)
“SDG TARGET” by “ENVIRONMENTAL POL-
ICY” in the field of the prompt footer where the
SDG target is declared, and “SDG target” by “pol-
icy” in the question field by the end of the footer.
The replacements to obtain a SDG-implicit prompt
for the TD task are similar, with the additional
detail of replacing each original target ID by its

https://bit.ly/climatenlp-sdg-target-detection
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Prompt template
You are an assistant for tasks in environmental impact
assessment (EIA). An excerpt from the textual content of
an EIA report is provided by the user. After it, 5 Sustain-
able Development Goal (SDG) targets are also provided,
each target with its corresponding SDG target ID. Please
ANSWER by identifying *all* the SDG targets that are
relevant to be addressed in the context of the provided
excerpt. Please answer to the best of your ability. If
you don’t know the answer, just say that you don’t know.
Keep the answer concise. When you refer to a target in
your answer, always cite the corresponding SDG target
ID (which must be among the given SDG targets) be-
tween square brackets (e.g. [4.7]), as it’s done in each
example. Examples are given below, each example be-
tween the ‘<example>’ and ‘</example>’ tags. After that,
you are given the actual EIA excerpt so that you identify
*all* the relevant SDG targets.
⟨example⟩
...
⟨/example⟩
...
Now, your task.
EXCERPT: ...
SDG TARGETS:
Target ID: ...
Target: ...
...
ANSWER:

Table 2: Template to build the prompt during augmenta-
tion (‘SDG-explicit’ version) for the TD task.

random unique identifier.
After observations about the phenomenon of an

LLM possibly answering correctly most likely due
to learning the pattern about the passages in the
prompt —being listed in the same order as the
retrieved ranking—, we experiment with an alter-
native random order of contexts.

Generation component. We generate answers
by prompting established LLMs. Specifically, we
use a family of open LLMs such as Llama2 (Tou-
vron et al., 2023) and a prominent model of the
GPT platform, GPT3.5 (Radford et al., 2019). We
also experiment with ClimateGPT, a family of
LLMs obtained by fine-tuning a corresponding
Llama2 model over corpora of documents within
the climate change domain.

Generation with Llama2 and ClimateGPT is per-
formed by inference with HuggingFace transform-
ers library, while for GPT we access via the Ope-
nAI API.

Summary. Our experimental parameters are:

• (Retrieval) Method: lexical or dense.
• (Augmentation) Prompt: SDG-explicit or

SDG-implicit.
• (Augmentation) Number of examples: 1 or 2.

• (Augmentation) Order of passages: as given
by the retrieval ranking, or random.

• (Generation) LLM: open (Llama2-13b,
Llama2-13b-ch, ClimateGPT-13b) or closed
(ChatGPT —gpt-3.5-turbo-0125—).

4.3 Evaluation Metrics
For each task, we evaluate the correctness of a
method by applying standard retrieval metrics of
precision and recall with respect to the retrieved
passage set (all the passage identifiers mentioned
in the generated answer) and the relevant passage
set (the set of all the known relevant passages such
that they appear among the contexts provided in the
prompt). We remind that in the TD task, the SDG
targets to be identified for a given EIA excerpt are
considered to be the passages in the RAG frame-
work. For a given method, we report the average
performance across all the instances in the test col-
lection of each task, i.e., across the 30 SDG targets
for the EI task and across the 50 EIA excerpts for
the TD task.

5 Results and analysis

Throughout this section, Tables 3 and 4 present the
results for all the configurations in our experimen-
tation. (The corresponding output files with the
full RAG results for all methods are made publicly
available in our repository.6)

5.1 RQ1: Retrieval component
In our experimentation, the possible impacts of the
retrieval stage are centered in the retrieval method:
lexical or dense. Firstly, in the EI task, lexical
retrieval leads to the best performances when com-
bined with GPT3.5 or Llama2-13b-chat, across all
metrics, and all augmentation strategies (number
of examples and prompt version). Results with
ClimateGPT-13b are split between the method set-
ting, with more tendency to prefer dense retrieval,
and mostly small changes across the parameter for
the number of examples in prompt.

Secondly, in the TD task, we observe that, when
using the SDG-explicit prompts, the precision
measurements with ChatGPT are similar for a
given setting and split for the number of examples,
while its recall favours the dense retrieval method.
Llama2-13b-chat also mostly changes between one-
and two-example setting, regardless of the SDG-
explicit or implicit prompt version. ClimateGPT-
13b always performs best with lexical retrieval.
6https://bit.ly/climatenlp-sdg-target-detection
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SDG-explicit prompt

LLM Retrieval
method

Passage
order

One example Two examples
Precision Recall Precision Recall

Llama2-13b
Lexical

By ranking 0.45 0.4444 0.1667 0.0778
Random 0.4861 0.5333 0.1667 0.1

Dense
By ranking 0.5556 0.5944 0.3333 0.1833
Random 0.5694 0.5889 0.3167 0.1667

Llama2-13b-ch
Lexical

By ranking 0.7 0.5167 0.7556 0.65
Random 0.6833 0.5278 0.8056 0.7278

Dense
By ranking 0.6167 0.4444 0.6667 0.6
Random 0.5333 0.4 0.6 0.5778

ClimateGPT-13b
Lexical

By ranking 0.6889 0.5333 0.6278 0.4889
Random 0.6556 0.4722 0.6833 0.55

Dense
By ranking 0.7167 0.5944 0.5833 0.5222
Random 0.5611 0.5222 0.5833 0.5167

GPT-3.5
Lexical

By ranking 0.7222 0.6611 0.7667 0.6778
Random 0.7444 0.6 0.7944 0.6722

Dense
By ranking 0.6556 0.6389 0.6556 0.5667
Random 0.6833 0.5833 0.7 0.6056

SDG-implicit prompt

LLM Retrieval
method

Passage
order

One example Two examples
Precision Recall Precision Recall

Llama2-13b
Lexical

By ranking 0.4778 0.55 0.2 0.0944
Random 0.4611 0.4444 0.2333 0.1556

Dense
By ranking 0.525 0.5389 0.2667 0.1389
Random 0.4667 0.4389 0.3 0.15

Llama2-13b-ch
Lexical

By ranking 0.7667 0.5444 0.7556 0.6222
Random 0.75 0.55 0.7389 0.6

Dense
By ranking 0.6333 0.4611 0.6333 0.5444
Random 0.6333 0.4389 0.5833 0.5

ClimateGPT-13b
Lexical

By ranking 0.6889 0.5556 0.5722 0.4056
Random 0.6722 0.5056 0.5611 0.4389

Dense
By ranking 0.6056 0.5167 0.5833 0.4889
Random 0.5833 0.5556 0.55 0.45

GPT-3.5
Lexical

By ranking 0.7667 0.6722 0.7556 0.7167
Random 0.7833 0.6056 0.7444 0.6556

Dense
By ranking 0.6056 0.5889 0.65 0.5889
Random 0.65 0.5611 0.6667 0.5722

Table 3: Experimental results for all the configurations in the SDG Evidence Identification task (SDG-explicit
prompt version in the top half of the table; SDG-implicit prompt in the bottom half). A metric group indicates
the setting for the parameter about number of examples in the prompt (one or two). For a given metric, the best
performance on each LLM is in bold and the best overall performance is underlined.

The scenarios where lexical retrieval is favoured
are possibly favoured by few key words that boost
the correct matching during retrieval as they are
very distinctive for a target and/or passage, which

gets less distinctive when combined by dense re-
trieval with the semantics of other words. Ex-
amples of these key words found in our data are
“overfishing” (strong signal for SDG target 14.4),



SDG-explicit prompt

LLM Retrieval
method

Passage
order

One example Two examples
Precision Recall Precision Recall

Llama2-13b
Lexical

By ranking 0.437 0.5933 0.044 0.06
Random 0.3 0.416 0.01 0.02

Dense
By ranking 0.4347 0.609 0.02 0.04
Random 0.3313 0.4743 0 0.0

Llama2-13b-chat
Lexical

By ranking 0.38 0.58 0.423 0.5877
Random 0.396 0.6133 0.332 0.447

Dense
By ranking 0.294 0.491 0.4677 0.63
Random 0.2253 0.365 0.4675 0.676

ClimateGPT-13b
Lexical

By ranking 0.6563 1.0 0.652 1.0
Random 0.6603 0.9893 0.662 0.9793

Dense
By ranking 0.611 0.98 0.608 0.98
Random 0.6117 0.9433 0.6213 0.976

GPT-3.5
Lexical

By ranking 0.8783 0.6193 0.87 0.609
Random 0.8867 0.602 0.8667 0.5827

Dense
By ranking 0.8683 0.6893 0.89 0.727
Random 0.857 0.6927 0.86 0.6887

SDG-implicit prompt

LLM Retrieval
method

Passage
order

One example Two examples
Precision Recall Precision Recall

Llama2-13b
Lexical

By ranking 0.476 0.6127 0.06 0.045
Random 0.3957 0.4737 0.0 0.0

Dense
By ranking 0.414 0.5393 0.015 0.02
Random 0.3007 0.3413 0.0 0.0

Llama2-13b-chat
Lexical

By ranking 0.6583 0.9633 0.3677 0.3837
Random 0.6857 0.8717 0.2823 0.286

Dense
By ranking 0.6283 0.975 0.3763 0.4483
Random 0.6287 0.8343 0.2667 0.3177

ClimateGPT-13b
Lexical

By ranking 0.649 0.958 0.654 0.983
Random 0.6587 0.8697 0.7067 0.917

Dense
By ranking 0.608 0.9467 0.613 0.975
Random 0.6013 0.8327 0.627 0.8843

GPT-3.5
Lexical

By ranking 0.93 0.5893 0.91 0.527
Random 0.89 0.5657 0.91 0.5387

Dense
By ranking 0.86 0.5907 0.87 0.5897
Random 0.8883 0.5937 0.8167 0.549

Table 4: Experimental results for all the configurations in the SDG Target Detection task (SDG-explicit prompt
version in the top half of the table; SDG-implicit prompt in the bottom half). A metric group indicates the setting for
the parameter about number of examples in the prompt (one or two). For a given metric, the best performance on
each LLM is in bold and the best overall performance is underlined.

“acidification” (for target 14.3), “transport” (for tar-
get 11.2), “alien” (for target 15.8 about invasive
species).

In the SDG target detection task, we observe

that the the most frequent relevant targets belong
to SDG 14 (about marine protection), which makes
sense as most of the base reports where passages
are taken describe aspects of environments in re-



gions around the Baltic Sea. It is followed in fre-
quency by SDG 15 (terrestrial and inland fresh-
water ecosystems, forests), and with clearly less
frequency by SDGs 7 (energy), 9 (infrastructure),
11 (housing, transportation), and 12 (waste, re-
sources).

5.2 RQ2: Augmentation component

Results from the ablation of the augmentation com-
ponent can be summarized as follows. Firstly, we
analyze the impact of the order of the passages
in the prompt. For the EI task, the order varies
a lot w.r.t. other parameter settings in the SDG-
explicit prompt configurations, whereas with the
implicit prompt version, most cases favour the or-
der by ranking. For the TD task, variations with
SDG-explicit prompt version persist, while it varies
slighlty less with implicit prompt and in many cases
favouring order by ranking.

Secondly, we discuss the influence of the number
of examples in the prompt. In the EI task, having
two examples is mostly beneficial for Llama2-13b-
chat and ChatGPT, while it harms ClimateGPT-13b
performances and largely hurts Llama2-13b. In
the TD task, the trends are similar for the Llama2
models but for ClimateGPT-13b and ChatGPT the
results are mixed, with cases of clear disadvantage
with more examples in the prompt.

5.3 RQ3: Generation component

Across both tasks and their respective configura-
tions, we verify as expected that ChatGPT is the
best performing LLM in several settings. A gen-
eral pattern for the EI task is that GPT performs
best in both metrics when only one example is pro-
vided in the prompt, followed by Llama2-13b-chat;
and that this gets inverted as Llama2-13b-chat is
the best performing in the two-examples setting.
The base model Llama-13b performs very close to
ClimateGPT-13b in very few scenarios, but the dif-
ferences become clearer in favour of ClimateGPT-
13b in the configurations with two examples.

For the TD task, GPT3.5 is the best performing
LLM for both SDG-explicit and implicit prompt
versions in the precision measurements. In turn,
ClimateGPT-13b dominates in recall and clearly
over Llama2-13b-chat for SDG-explicit prompt,
but splits the best recall with Llama2-13b-chat in
SDG-implicit, between one- or two-example set-
tings, with Llama2-13b-chat overall closer.

5.4 Summary of observations

As a conclusive reiteration of our observations, we
mention the following main remarks. (1) The EI
task is best addressed with ChatGPT prompted
with contexts obtained via lexical retrieval. (2)
The TD tasks gets best precision-oriented perfor-
mance when using ChatGPT over densely retrieved
passages, while for best recall, it does with Cli-
mateGPT over lexically retrieved passages. (3) In
both tasks, most often the ranking in which pas-
sages where retrieved is the same order in which
to list the passages in the prompt during augmenta-
tion. (4) The exact convenient number of examples
in few-shot generation vary due to the complexity
of the notion of a passage addressing an SDG tar-
get, and depends on the actual example(s) being
considered.

6 Conclusions, Limitations, and Future
Work

In this work, we study two dual problems on envi-
ronmental analysis as a mean to approach towards
the automatization of knowledge-intensive, time-
consuming tasks in the practice of assessing en-
vironmental impact in reports and its correspon-
dence with the recent developments around SDGs.
Specifically, we propose and assess several meth-
ods within the RAG framework powered by LLMs.

Our work approaches a paradigmatic scenario of
environmental analysis, yet it is still limited in its
capabilities to identify evidence and detect targets.
On the one hand, the selected targets cover a mean-
ingful part of the SDGs scope in regards to EIA,
yet there are more SDGs and targets that could be
considered. On the other hand, the collection of
reports where the EIA passages come from suits
well as information source for our experimentation,
yet it is centered on particular regions of Europe
and so our study fails to capture phenomena about
other environments and their corresponding SDG
targets of relevance. Furthermore, our data annota-
tion is conducted with caution and good faith but it
could present cases where the judgement could be
different, especially as the concept of “addressing
an SDG (target)” is already not exact in the litera-
ture and the EIA practices described in the reports
often take advantage of these uncertainties.

In future work, we plan to further study the dual-
ity of these two tasks by approaching environmen-
tal analysis with a method were each task retrofits
the other one. In this way, for example, a textual



passage identified via EI for an SDG target can
be the input of a subsequent TD stage to possi-
bly expand the space of targets of interest for that
EIA report, as well as exploiting relations between
passages in the same report.

Another line of research is experimenting with
the usage of a claim detector, this is, a dedicated
model for identifying climate-aware claims in text,
such as the one developed by (Stammbach et al.,
2023). This component could complement the re-
trieval stage to improve the selection of passages
that are finally fed into the LLM during generation.

A third possible area of work corresponds to
automatically labeling larger volumes of test in-
stances with an LLM as assessor, which could ex-
tend the evaluation space, as well as allow for exper-
imenting with fine-tuning a base pre-trained model
with these instances. In a similar fashion, a fourth
direction would investigate the automatic assess-
ment, also via LLM, of correctness for a predicted
result. Such an assessment would be validated by
observing the inter-annotator agreement with man-
ual assessments in a sample of the test collection.
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