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Abstract

Test contamination is a serious problem for the
evaluation of large language models (LLMs) be-
cause it leads to the overestimation of their per-
formance and a quick saturation of benchmarks,
even before the actual capability is achieved.
One strategy to address this issue is the (adver-
sarial) generation of variations, by including
different exemplars and different rephrasings
of the questions. However, these two interven-
tions can lead to instances that can be more
difficult (accumulating on the expected loss of
performance by partly removing the contam-
ination) but also to instances that can be less
difficult (cancelling the expected loss of per-
formance), which would make contamination
undetectable. Understanding these two phe-
nomena in terms of instance difficulty is critical
to determine and measure contamination. In
this paper we conduct a comprehensive anal-
ysis of these two interventions on an addition
task with fine-tuned LLAMA-2 models.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020) have transformed Natural Language process-
ing, but face evaluation challenges, especially with
publicly available benchmarks. A key issue is data
contamination (Ravaut et al., 2024), where train-
ing data contains test instances. A model trained
on this data has seen part of the test set, which
can have important effects in the evaluation of the
model, leading to inflated performance measures
(Yang et al., 2023; Sainz et al., 2023).

Recently, it has been seen that the actual issue
of data contamination could be more predominant,
as it is not only present by exact copies of the test
instances in the training data. Studies such as the
one by Yang et al. (2023) show that even rephrased
or translated test instances in training data can im-
prove performance, indicating potential contamina-

∗Corresponding author. Email: bmehrba@upv.es .
†Part of NRF project 329745 Machine Teaching For XAI.

Template

1
Can you please add [term1] and [term2] to-
gether?

2 Find the sum of [term1] and [term2].
3 Add up two numbers: [term1] and [term2].
4 Please work out the total of [term1] and [term2].

5
Please determine the numeric sum of [term1] and
[term2].

6
Proceed to identify the aggregated total of the
numbers [term1] and [term2].

7
Perform an addition operation on the numerical
values [term1] and [term2].

Table 1: Various templates created by GPT-4 for the
addition task. By instantiating them with different ex-
emplars, we can get different instances, such as ‘Find
the sum of 56 and 723’ and ‘Perform an addition opera-
tion on the numerical values 35 and 85’. Are these two
instances equally difficult?

tion. However, the effect of the difficulty of these
rephrased items has not been yet investigated. For
instance, rephrasing can involve more convoluted
or unusual expressions, which make the item more
difficult for language models. Table 1 shows a
series of templates that can be used to rephrase
the expression behind the task of adding two num-
bers. The actual exemplar (the pair of [term1]
and [term2]) can also be replaced by a different
pair to avoid contamination. These two interven-
tions (different rephrasing or exemplar) can have
mixed effects: some variations may inadvertently
increase the difficulty of the instances, leading to
an expected drop in performance, masking contam-
ination, while others may make the instance easier
and leading to an overestimation of performance,
leading to false positives.

Understanding these phenomena in terms of in-
stance difficulty is a novel approach for accurately
identifying and measuring contamination. In this
study, we conduct a thorough analysis of rephrased
templates and replaced exemplars using fine-tuned

mailto:bmehrba@upv.es


LLAMA-2 (Touvron et al., 2023) models for an
addition task. We generate templates of varying
difficulty using GPT-4 (Achiam et al., 2023), fine-
tune the models, and assess how these variations
affect performance on exemplars of varying num-
ber of digits (and hence difficulty).

The main contributions are:

• We investigate how different rephrased and re-
placed test instances impact the performance
of fine-tuned LLAMA-2 models on an addi-
tion task, revealing critical insights into the
effects of data contamination.

• We study the impact of template difficulty on
model performance, highlighting that varia-
tions in test instance phrasing can significantly
affect evaluation outcomes.

• We evaluate the effects of fine-tuning with
easy versus hard templates, showing how tem-
plate diversity and intrinsic difficulty influ-
ence model performance and contamination
detection.

The following sections detail our experimental de-
sign, methodology, and results.

2 Background

Several methods have been used to address data
contamination. Prior to big tech companies close
sourced their models and the training data, a com-
mon approach was trying to look for evaluation
instances in the training data. String matching
and embedding similarity are two techniques that
have been commonly used for this purpose. Ope-
nAI used 8-gram matching of test instances and
training dataset for GPT-2 model (Radford et al.,
2019). For GPT-3 (Brown et al., 2020) the same
approach has been taken and all data points from
the evaluation sets that had a 13-gram collision in
the pre-training Common Crawl (C4) dataset were
removed to tackle contamination.

As contamination can involve minor variations
of the examples, calculating cosine similarity be-
tween embeddings of test and training items can
also be used for finding cases in which the test
item has been rephrased or expressed in a different
language (Gunasekar et al., 2023) (Riddell et al.,
2024).

But string matching and even embedding match-
ing are not able detect rephrased test items effec-
tively in general (Yang et al., 2023). More sophisti-
cated and effective techniques employ embedding

similarity search to identify the top-k samples sim-
ilar to a given test sample and then prompting a
powerful LLM such as GPT-4 to determine if any
of the k samples are too similar to the test case.

For closed source models where no informa-
tion regarding the training set is provided, none
of the above mentioned methods are applicable.
Introducing new contamination-free benchmarks
such as LastEval (Li, 2023), WIKIMIA (Shi et al.,
2023), KIEval (Yu et al., 2024), LiveCodeBench
(Jain et al., 2024), Termite (Ranaldi et al., 2024)
might seem a reliable solution for the problem, but
as (Balloccu et al., 2024) mentioned, these new
benchmarks can get contaminated as soon as they
are publicly available or even just when used for
evaluating closed source models by the creators of
the benchmark themselves for the first time. In ad-
dition, building a high quality benchmark is a time
consuming process and can not be done overnight.

Consequently, the idea of continuously generat-
ing new variation has taken ground. Clean-Eval
(Zhu et al., 2023) intends to ‘purify’ current bench-
marks by rephrasing the test items. While a drop
in the performance of LLMs on the rephrased data
points is considered as a sign of decontamination,
the role of difficulty has been neglected in their
analysis.

3 Methodology

Data contamination occurs when instances from the
test set are found in the train set of AI models. For
example, if a model is tested on the question "What
is 123 + 456?" but has seen the same question
(and answer) during training, it might simply recall
the answer rather than ‘compute’ it again. Even if
rephrased forms of test items like "Calculate the
sum of 123 and 456" or "What do you get when
you add 456 to 123?" exist in the training data, the
evaluation is still compromised. These rephrased
forms can inadvertently aid the model, causing an
overestimation of its true capabilities.

On the other hand, testing on the rephrased form
of original test items is suggested by the researchers
to mitigate the contamination problem. Yet to the
best of our knowledge, the role of difficulty of
original test items and their variants has not been
studied. Also, what matters more, the change in
the exemplar or rephrasing the template? For in-
stance, solving "Find the result of 9876 + 54321"
might naturally be harder than "Compute 12 + 34,"
regardless of rephrasing.
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Figure 1: Performance of Llama2 7B chat model on the constructed dataset of addition.

Dataset Construction To explore these consider-
ations, we designed a dataset of addition problems
varying in complexity. Specifically, we generated
1,000 addition pairs (each different pair is an ex-
emplar) for numbers ranging from five to fourteen
digits. Each exemplar’s intrinsic difficulty was de-
termined by the sum of the number of digits of the
addends. For example, the intrinsic difficulty of
"829 + 4531" is 7.

Instance templates To produce varied instances,
we asked GPT-4 to rephrase each addition problem
in ten different ways. After excluding three am-
biguous rephrasings, we used the remaining seven
clear templates (see table 1). By applying seven
templates to one thousand addition pairs, we gener-
ated seven thousand instances.

Model Evaluation and Fine-Tuning We used
the Llama-2 7B chat model to check how different
templates and exemplar affect model performance.
First, we tested the model on the 7,000 instances
(1,000 different exemplars per template) to get a
baseline performance, as shown in Figure 1. We
see some noticeable effect of the template (#2, or-
ange, being much better than #7, pink), and a very
significant influence of the #digits.

We performed three main fine-tuning experi-
ments to explore how template variations affect

model performance. In the first experiment, we
used 70% of the exemplars (700), each with a dif-
ferent template, keeping a balanced representation
of templates in the training data (equal number of
exemplars, 100, for each template). The remaining
30% of the exemplars (300) was left for a non-
contaminated validation set. Figure 2 shows the
data construction process for our fist fine-tuning
experiment.

The second experiment focused on the impact
of template difficulty. We fine-tuned the model
with either the easiest template (template 2) or the
hardest template (template 7), based on initial per-
formance evaluation (Figure 1). We then tested the
fine-tuned models on all templates to see how this
affected performance (Figure 5).

In the last experiment, we study the role of di-
versity of contaminating items. We compare the
performance of the fine-tuned models when trained
on four templates (#1, #2, #3 and #4) with the case
only one of these templates is included in training,
but repeated four times. (Figure 7)

In all cases we fine-tune Llama2 7B Chat model.
Our fine-tuning process used the QLoRA method
(Dettmers et al., 2024), implemented through the
Huggingface pipeline. The choice of QLoRA al-
lowed us to fit the entire Llama2 7B chat model
within the memory constraints of a single NVIDIA
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Figure 2: Data split for the first fine-tuning experiment. For each of the 10 digit lengths, 100 addition pairs
(exemplars) are randomly generated. 70% are used for contaminating the training data. By applying 7 templates
that are demonstrated with different colour in this figure, 490 instances can be created, one in seven (70) appearing
in the train (shown in black) and the rest in the test. The 30 % of the original exemplars for this digit length are kept
as non-contaminated validation set (below the dashed line) also with seven variations each in the test set (210).

GeForce RTX 3090 GPU with 24 gigabytes of
RAM, making fine-tuning feasible for accessible
hardware. The learning rate has been set to 1e-3
and batch size of 8 has been used. Through careful
calibration, we found that this configuration pro-
vides an optimal balance, maximizing model per-
formance while avoiding memory constraint issues.
For the first and second experiments we fine-tuned
the model for 5 epochs. For the third experiments
1 epoch is as the data is duplicated 4 times.

3.1 Research Questions

To guide our analysis, we formulated the following
research questions, based on the first intervention
(rephrasing):

1. RQ1: How does the difficulty of rephrased
templates affect the performance of Llama-2
in the presence of potential data contamina-
tion?

2. RQ2: Does the performance of Llama-2 on
contaminated data differ when fine-tuned to
templates of different difficulty?

3. RQ3: What is the effect of varying the diffi-
culty of the templates used for fine-tuning on

the level of data contamination and the subse-
quent performance evaluation of Llama-2?

All these questions are analysed in the context of
the exemplar difficulty as well (# digits), as this is
the second intervention that can affect performance,
and one intervention can mask the other:

4 Results

As shown in previous studies, LLMs are sensitive to
prompts, i.e., the way that the request is formulated.
Figure 1 shows that even for a simple task such as
addition, rephrasing the question influences model
performance. We can observe that template 2 in
average is the easiest and template 7 is the most
difficult version of rephrasing addition among our
7 templates. Consequently, as rephrasing a test
item can change its difficulty level, this should be
considered when this approach –rephrasing test
items– is taken to address contamination. A lower
performance of models on the rephrased test items
might be simply due to the higher difficulty level
of them and may not be a sign of their purity.

Figure 3 demonstrate this effect more clearly.
As it can be seen, there are cases that the perfor-
mance of the model for one or more templates
when tested on the non-contaminated validation
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Figure 3: Performance of Llama2 7B chat model fine-tuned on the data described on Figure 2. The dashed lines
show the performance of fine-tuned model on the contaminated test set. The test set is contaminated because it
contains the exemplar (addition pairs) appeared in the training with the original template and the other 6 templates.
The solid lines show the performance of the fine-tune model on the validation set where no exemplar (addition pair)
from it exists in the training set.
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Figure 4: Llama2 7B model average performance comparison when tested on the non-contaminated validation-set,
the contaminated test-set, train-set, and test-set excluding training instances

set is higher than some templates when tested on
the contaminated test-set. This phenomenon can
be seen for 5-digit, 6-digit, 7-digit, and 11-digit
additions (Figure 3 clearly demonstrates this when
the solid lines cross the dashed lines).

4.1 Difficulty of the Contaminating Template

Rephrased items that can potentially be found in
the training data might have a different difficulty
level compared to the test data points and can influ-
ence the contaminating level in different ways. To
analyze this, we fine-tuned Llama2 7B chat model
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Figure 5: Performance of Llama2 7B chat model when fine-tuned. Left: fine-tuned on the most difficult template #7
(based on the model performance before fine-tuning). Right: fine-tuned on the easiest template #2.
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Figure 6: Average performance of Llama2 7B models before and after fine-tuning on templates #2 and #7.

on the most difficult and on the easiest template
and measure their performance of the fine-tuned
models on all templates variations. As can be seen
in Figure 1, for the Llama2 7B chat model, tem-
plate 2 is the easiest, as on average the performance
for this template is higher than those of the others.
Template 7 on the other hand, is the most difficult
for this model (before fine-tuning).

Figure 5 shows the performance of the fine-tuned
models. It is noticeable that performance of the
fine-tuned model on templates that have not been
used in fine-tuning is affected differently when fine-
tuned on templates 2 or 7. Humans are not highly
sensitive to the way a question is formulated and
in those cases that they are, it is expected that if
they learn the hardest rephrased form of a task, they
can easily cover the easier variations too. Figure

6 shows that this does not hold for LLMs. Fine-
tuning on the easiest template shows better perfor-
mance on 3 other templates (templates 1, 3, 4 and
5) however, for the case which we fine-tuning on
the hardest template the resulting model performs
better only on one other template (number 6).

4.2 Diversity of the Contaminating Template
A training set that contains one rephrased item from
the test set that is repeated k times has been con-
taminated in a different way compared to a training
set that has k variations of a test item. In the latter
case, the diversity of the contaminating template
is higher. But does higher diversity cause higher
contamination effect in term of performance boost?
In order to find out the response to this question,
we fine-tuned Llama2 7B model in two different
scenarios. In the first scenario, we fine-tune the
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Figure 7: On the left the performance of Llama2 7B chat when fine-tuned one epoch on templates 1, 2, 3 and 4. On
the right, performance of the model when fine tuned on a random template between 1, 2, 3 or 4 for four epochs.

model on all instances of templates 1, 2, 3 and 4
and then tested on the remaining templates (5, 6
and 7). The result can be seen in Figure 7 left. In
the second scenario, while we use the same test
set, the training set contains one random template
between 1, 2, 3 and 4 that is repeated 4 times (Fig-
ure 7 right). A close look at these figures reveals
that if we fix the number of times a rephrased form
of a test instance is found in the training set, less
diversity has a higher contaminating effect. In our
experiments the average performance of the model
fine.tuned on diverse templates is 61.4 while we get
71.0 for the less diverse counterpart. This could be
due to the fact that in the diverse cases, the model’s
weights are updated to learn the template and the
task which in our case id the addition, but in a less
diverse scenario, the model can concentrate on the
task as the template wrapping the main task is not
changing.

5 Conclusions

Our study explored the effects of data contamina-
tion and instance variation on the performance of
large language models (LLMs), specifically using
fine-tuned LLAMA-2 models on an addition task.
Key findings from this investigation answered our
research questions and highlighted important in-
sights.

Regarding template difficulty (RQ1), we show
that the performance of LLMs is significantly in-
fluenced by the template or rephrasing of test
items. Easier templates, such as Template 2, con-
sistently yielded higher performance, while more
complex templates, like Template 7, posed greater

challenges. When analysing the impact of fine-
tuning on contaminated data (RQ2), we observed
that performance on non-contaminated templates
varies after fine-tuning. Contrary to expectations,
some templates showed higher performance on non-
contaminated validation sets compared to contam-
inated test sets, indicating that contamination and
difficulty levels are deeply intertwined. Finally,
focusing on template diversity and contamination
(RQ3), we saw that fine-tuning on an easier tem-
plates improved performance on other templates
more consistently than fine-tuning on harder tem-
plates. This challenges the assumption that learn-
ing from more difficult examples would generalize
better to simpler variations. Additionally, lower
template diversity in the training set amplified the
contamination effect, suggesting that less diverse
contamination scenarios have a stronger influence
on model performance.

These findings highlight the relevance of consid-
ering both the difficulty and diversity of rephrased
instances when evaluating LLM performance. In
particular, the change of rephrasing and exemplars
can have confounding effects masking contamina-
tion or suggesting contamination where there is not.
Our results suggest that addressing data contami-
nation effectively requires more nuanced strategies
that accommodate these factors. For future work,
we are investigating the effects of contamination
and instance variation across more complex and
diverse NLP tasks.
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