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Abstract

We study a model of machine teaching where
the teacher mapping is constructed from a size
function on both concepts and examples. The
main question in machine teaching is the mini-
mum number of examples needed for any concept,
the so-called teaching dimension. A recent paper
(Ferri et al., 2024) conjectured that a worst case
for this model, as a function of the size of the con-
cept class, occurs when the consistency matrix
contains the binary representations of numbers
from zero and up. In this paper we prove their
conjecture. The result can be seen as a generaliza-
tion of a theorem resolving the edge isoperimetry
problem for hypercubes (Hart, 1976), and our
proof is based on a lemma of (Graham, 1970).

1. Introduction
In formal models of machine learning (Valiant, 1984) we
have a concept class C of possible hypotheses, an unknown
target concept c∗ ∈ C and training data given by correctly
labelled random examples. The concept class C is given
by a binary matrix M whose rows are concepts and whose
column set is the domain of examples X , with M(c, x) = 1
if c is consistent with (x, 1). In formal models of machine
teaching a set of labelled examples w called a witness is
instead carefully chosen by a teacher T , i.e. T (c∗) = w, so
the learner can reconstruct c∗. The common goal is to keep
the teaching dimension, i.e., the cardinality of the witness
set, maxc∈C |T (c)|, as small as possible. In recent years,
the field of machine teaching has seen various applications
in fields like pedagogy (Shafto et al., 2014), trustworthy
AI (Zhu et al., 2018), reinforcement learning (Zhang et al.,
2021), active learning (Wang et al., 2021) and explainable
AI (Yang et al., 2021).
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Various models of machine teaching have been proposed,
e.g. the classical teaching dimension model (Goldman &
Kearns, 1995), the optimal teacher model (Balbach, 2008),
recursive teaching (Zilles et al., 2011), preference-based
teaching (Gao et al., 2017), no-clash teaching (Fallat et al.,
2023), and probabilistic teaching (Ferri et al., 2022). In
(Telle et al., 2019) a model focusing on teaching size is
introduced, and in (Ferri et al., 2024) an algorithm called
Greedy constructing the teacher mapping in this model is
given.

Greedy assumes two total orderings ≺·C on C and ≺·X on
X , with ≺·X extended to ≺·W on subsets of labelled exam-
ples W = 2X×{0,1} by shortlex ordering. In the Greedy
algorithm the teacher defines its mapping iteratively: go
through W in the order of ≺·W , and for a given witness
w = {(x1, b1)...(xq, bq)} find the earliest (in ≺·C order)
c ∈ C consistent with w (i.e. with M(c, xi) = bi for all
1 ≤ i ≤ q) such that T (c) is not yet defined, then set
T (c) = w and continue with next witness (if no such c
exists then drop this w).

To compare the teaching dimension achievable by Greedy
to that of other models, the authors of (Ferri et al., 2024)
argued as follows when a large witness is used: If Greedy
assigns T (c) = w for some w = {(x1, b1)...(xq, bq)} then
we may ask, why was c not assigned to a smaller witness?
Assuming there are |X| = n examples, then any subset
Q ⊆ X of size q − 1 when labelled consistent with c has
already been tried by Greedy, and hence some other concept
must already have been assigned to any such Q, and all
these concepts are distinct. This means we must have taught(

n
q−1

)
= k other concepts already. But then we have already

taught at least k + 1 concepts and we can again ask why
were any of these not taught by a smaller witness of size
q − 2? It must be that any such witnesses (labelled to be
consistent with some concept among the k + 1 we already
have) must have been used to teach other, again distinct,
concepts.

Note that, to verify how many distinct witnesses exist, cor-
responding to new concepts, that are labelled consistently
with one of these k + 1 concepts, one must sum up the
number of distinct rows when projecting on q − 2 columns,
for all choices of these columns. Note that the number of
distinct rows, i.e witnesses and hence number of concepts,
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when projecting on q − 2 columns, for all choices of these
columns, depends on the matrix M you do the projection
on. The authors of (Ferri et al., 2024) wanted to find the ma-
trix M minimizing the sum of unique rows after doing the
projection, thus arriving at the following combinatorial ques-
tion. What is the binary matrix M on k distinct rows and n
columns that would give the smallest sum when projecting
on q columns? They conjectured that this was achieved by
the matrix Hn,k consisting of the k rows corresponding to
the binary representations of the numbers between zero and
k − 1, with leading 0s to give them length n. In this paper
we prove this conjecture.

Consider the binary consistency graph GC on the set of
concepts versus the set W of subsets of labelled exam-
ples, with concept c adjacent to w ∈ W if c consistent
with each labelled example in w. We can view the Greedy
Matching algorithm as working on GC . Note that the
above-mentioned sum for a matrix M when projecting on
q columns (called mq(M) in the next section) is then the
number of W -vertices on q examples that have at least one
neighbor among the concepts. Since we prove that Hn,k

minimizes this value for all q, it means that it minimizes the
number of W -vertices having a neighbor in the consistency
graph, over all concept classes on k concepts over a domain
of size n. As the consistency graph is of importance in ma-
chine teaching this is an indication our result has a general
relevance in that field.

When q = n − 1 this minimization question is equivalent
to asking for the induced subgraph on k vertices of the hy-
percube of dimension n having the maximum number of
edges, for the following reason. The rows of the k by n
binary matrix M are viewed as k vertices of the hypercube
of dimension n, labelled in the standard way, with two ver-
tices adjacent iff their labels differ in exactly one dimension.
When q = n − 1 we have

(
n

n−1

)
= n choices for the pro-

jection on q columns and each such projection leaves out
exactly one column (and a column corresponds to a dimen-
sion of the hypercube). Each such projection could give at
most k unique rows, so the maximum achievable sum of
unique projection rows is k times n. The main observation
when q = n− 1 is the following: three or more rows cannot
have the same projection row, but two rows can, and two
rows of M give the same projection row (when leaving out
a column/dimension) if and only if the corresponding pair
of vertices are adjacent (across the dimension we left out),
and thus the sum of unique projection rows for M is, for
q = n − 1, k times n minus the number of edges induced
in the hypercube. Thus, a matrix minimizing the sum of
unique projection rows for q = n − 1 will also maximize
the number of induced edges in the hypercube of dimension
n.

The question of finding the matrix achieving the maximum

mentioned above is called the edge isoperimetry problem
for the hypercube. This has been shown (Hart, 1976) to
be achieved by Hn,k, and the edge isoperimetry of the hy-
percube has been studied extensively in (McIlroy, 1974;
Delange, 1975; Hart, 1976; Greene & Knuth, 1990; Agnars-
son, 2013) to name a few articles. The result we give in this
paper is thus a generalization of the edge isoperimetry prob-
lem on the hypercube, as we show that Hn,k is the solution
not only when q = n− 1, but for all values of 1 ≤ q ≤ n.

The rest of our paper is organized as follows. In Section 2
we give the formal definition of the conjecture. In Section
3 we show that the conjecture would be settled if we could
prove a stronger theorem. Then in Section 4 we prove this
stronger theorem, based on an old result from (Graham,
1970).

2. Statement of the main theorem
Let M be a k×n binary matrix whose all k rows are distinct.
Let Mn,k be the set of all such matrices. For any binary
matrix A, let dif(A) denote the number of unique rows in
the matrix A. For Q ⊂ {1, 2, ...}, let M(Q) be the sub-
matrix of M ∈ Mn,k formed by taking the columns with
indices from Q. Finally for integers a and b where a ≤ b let
[a, b] = {a, a+ 1, ..., b}. Our main interest is the number

mq(M) =
∑

Q∈([1,n]
q )

dif(M(Q))

which is the sum the number of unique rows for each subma-
trix of M created by picking a subset of the columns of size
q. Alternatively viewing the matrix M as the vertices of a
hypercube one can observe that mq(M) counts the number
of (n − q)-dimensional subcubes (of the hypercube of di-
mension n) that contain at least one vertex of M . For fixed
positive integers k, n and q, we are interested in finding a
matrix M ∈ Mk,n with the minimum value of mq(M). Let
mq(n, k) be this minimum value, i.e.,

mq(n, k) = min
M∈Mn,k

mq(M).

We show that the k × n binary matrix Hn,k whose rows are
the binary representations of all numbers between zero and
k − 1 achieves this minimum value of mq(n, k).

Example 1.

H5,6 =


0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 1 0 0


and m2(H5,6) = 31.
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It will be useful for us to use the following recursive defini-
tion of Hn,k. Let 0 be the all 0 row vector and let 0T be the
all 0 column vector, and similarly for 1 and 1T . Then

Hn,k =


0 k = 1(
Hn−1,⌈ k

2 ⌉
0T

Hn−1,⌊ k
2 ⌋

1T

)
k > 1

Let hq(n, k) = mq(Hn,k). Our goal is thus to prove the
following theorem.

Theorem 2.1. For any positive integers q, n, k where q ≤ n
and k ≤ 2n,

mq(n, k) = hq(n, k).

Here is a diagram showing how we will prove Theorem 2.1.

Lemma 3.2

Lemma 3.3

Lemma 3.4

Lemma 4.1 Cor. 4.2

Lemma 4.3 (Graham, 1970) Lemma 4.5 Lemma 4.7

Thm. 3.1

Thm. 2.1

3. A sufficient condition
The goal of this section is to prove that the following the-
orem (whose proof we leave to the next section) implies
Theorem 2.1.

Theorem 3.1. For any positive integers q, n, k where q ≤ n
and k ≤ 2n,

min
⌈ k

2 ⌉≤x≤k−1
hq(n, x) + hq−1(n− 1, k − x)

= hq(n, ⌈
k

2
⌉) + hq−1(n− 1, ⌊k

2
⌋).

which is just stating that the minimum value of the expres-
sion on the left occurs when x = ⌈k

2 ⌉.

Lemma 3.2. The h numbers satisfy the recurrence relation

hq(n, 1) =

(
n

q

)
and

hq(n, k) = hq(n, ⌈
k

2
⌉) + hq−1(n− 1, ⌊k

2
⌋)

for k > 1.

Proof. Let Q be a q-element subset of the column-index set
{1, 2, . . . , n}. If n ̸∈ Q, then each of the bottom ⌊k

2 ⌋ rows
of Hn,k(Q) appears as a row among the ⌈k

2 ⌉ top ones, and
hence mq(Hn,k({1, 2, . . . , n − 1})) = mq(Hn−1,⌈ k

2 ⌉
) =

hq(n − 1, ⌈k
2 ⌉). Since the value of the last column (the

n-th column) is 0 for the ⌊k
2 ⌋ rows and 1 for the rest we

have that if n ∈ Q, every row from the bottom ⌊k
2 ⌋ rows

of Hn,k(Q) differs from any row from the ⌈k
2 ⌉ top ones,

and so the sum over those Q that contain n contributes
exactly mq−1(Hn−1,⌈ k

2 ⌉
)+mq−1(Hn−1,⌊ k

2 ⌋
) = hq−1(n−

1, ⌈k
2 ⌉) + hq−1(n− 1, ⌊k

2 ⌋). Thus

hq(n, k)

= hq(n−1, ⌈k
2
⌉)+hq−1(n−1, ⌈k

2
⌉)+hq−1(n−1, ⌊k

2
⌋).

This can be slightly simplified as follows. Note that
hq(n − 1, ⌈k

2 ⌉) + hq−1(n − 1, ⌈k
2 ⌉) is exactly the con-

tribution of the ⌈k
2 ⌉ top rows of Hn,k to mq(Hn,k), i.e.,

mq((Hn−1,⌈ k
2 ⌉
0T )) what equals mq((0

THn−1,⌈ k
2 ⌉
)) =

mq(Hn,⌈ k
2 ⌉
) = hq(n, ⌈k

2 ⌉) and the claim follows.

Lemma 3.3. For any positive integers q, n, k where q ≤ n
and k ≤ 2n,

mq(n, k) ≥ min
⌈ k

2 ⌉≤x≤k−1
mq(n, x) +mq−1(n− 1, k − x)

Proof. Let A ∈ Mn,k be a matrix that minimizes mq over
Mn,k, i.e., it satisfies mq(A) = mq(n, k).

If k = 1, then every Q ∈
(
[1,n]
q

)
contributes 1 to the sum∑

Q dif(M(Q)), and hence mq(A) =
(
n
q

)
.

Let k > 1. Suppose w.l.o.g. that the last column contains
both 0’s and 1’s. Let y be the number of 0’s in it, and
assume that the 0’s are in rows 1, . . . , y and the 1’s in rows
y + 1, . . . , k, with y ≥ k − y, i.e., y ≥ ⌈k

2 ⌉. Let T be the
submatrix of A determined by rows 1, . . . , y and columns
1 . . . , n−1, and let B be the submatrix determined by rows
y + 1, . . . , k and columns 1, . . . , n− 1, i.e.,

A =

(
T 0T

B 1T

)
.

We further denote by T ∗ = (T 0T ) the sub matrix of A
formed by its top ⌈k

2 ⌉ rows.

We first observe that

∑
Q∈([1,n]

q ):n ̸∈Q

dif(A(Q)) ≥
∑

Q∈([1,n−1]
q )

dif(T (Q)) (1)

since in this case we do not include the n-th column in Q.
Because the n-column is not included we observe that any
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unique row projection counted by
∑

Q∈([1,n−1]
q ) dif(T (Q))

will be a subset of the unique row projections counted by∑
Q∈(nq):n ̸∈Q dif(A(Q)).

We also see that

∑
Q∈([1,n]

q ):n∈Q

dif(A(Q)) ≥
∑

Q′∈([1,n−1]
q−1 )

dif(T (Q′))

+
∑

Q′∈([1,n−1]
q−1 )

dif(B(Q′))
(2)

since when n ∈ Q, each row leading to a unique projection
in A, the entire row, except that last column, was in T or in
B. As we know that each projection of rows in B will differ
from rows in T in at least the n-th column, we can count
up the number of unique projections in T and B separately,
using Q of size (q − 1) as we will increase the size by 1
when we add back n.

We see that mq(T
∗) ≥ mq−1(n−1, k−y) since for a given

T ∗ for n columns and y rows, the mq values will be greater
or equal to the minimum value over all matrices of size
(n, y). We also see that mq−1(B) ≥ mq−1(n − 1, k − y)
using the same idea. Given a matrix B of size (n−1, k−y),
the mq value of this matrix will be larger or equal to the
minimum value over all matrices of size (n − 1, k − y).
Combining these we get the inequality

mq(T
∗) +mq−1(B) ≥

mq−1(n− 1, k − y) +mq−1(n− 1, k − y)
(3)

.

Finally we need the inequality

mq(n, y) +mq−1(n− 1, k − y) ≥
min

⌈ k
2 ⌉≤x≤k−1

mq(n, x) +mq−1(n− 1, k − x) (4)

To show the soundness of this inequality we observe that
when x = ⌈k

2 ⌉ we have x ≤ y, as x = ⌈k
2 ⌉ ≤ y. We

also have y ≤ k − 1, as we assume that the last column
has both 0s and 1s. When x = k − 1, we have y ≤ x,
as we do the minimization over all possible values of x
in this range, we know that we are evaluating x = y as
well. Hence the minimum will be equal to or less than
mq(n, y) +mq−1(n− 1, k − y).

Using these four relations we can now finish the proof.

mq(A) =∑
Q∈([1,n]

q ):n ̸∈Q

dif(A(Q)) +
∑

Q∈([1,n]
q ):n∈Q

dif(A(Q)) ≥

By combining (1) and (2) we get

≥
∑

Q∈([1,n−1]
q )

dif(T (Q)) +
∑

Q′∈([1,n−1]
q−1 )

dif(T (Q′))

+
∑

Q′∈([1,n−1]
q−1 )

dif(B(Q′)) =

=
∑

Q∈([1,n−1]
q )

dif(T (Q)) +
∑

Q∈([1,n]
q ),n∈Q

dif(T ∗(Q))

+
∑

Q′∈([1,n−1]
q−1 )

dif(B(Q′)) =

= mq(T
∗) +mq−1(B) ≥

by (3) we get

≥ mq(n, y) +mq−1(n− 1, k − y) ≥

and by (4)

≥ min
⌈ k

2 ⌉≤x≤k−1
mq(n, x) +mq−1(n− 1, k − x).

Lemma 3.4. Theorem 3.1 implies Theorem 2.1

Proof. Certainly mq(n, k) ≤ hq(n, k), we prove the other
inequality by induction on k. The base case k = 1 follows
from mq(n, 1) = hq(n, 1) =

(
n
q

)
.

Suppose k > 1. Lemmas 3.2 and 3.3 imply that

mq(n, k) ≥ min
⌈ k

2 ⌉≤x≤k−1
mq(n, x)+mq−1(n−1, k−x) ≥

(by the induction hypothesis)

≥ min
⌈ k

2 ⌉≤x≤k−1
hq(n, x) + hq−1(n− 1, k − x) =

(by Theorem 3.1)

= hq(n, ⌈
k

2
⌉) + hq−1(n− 1, ⌊k

2
⌋) =

(by Lemma 3.2)
= hq(n, k).
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4. Proving Theorem 3.1
In this section we will prove Theorem 3.1 by showing that
hq(n, x) ”increases” at least as fast as hq−1(n− 1, k − x)
”decreases” when x starts at ⌈k

2 ⌉ and increases until k − 1.
To be more precise, we will show that

hq(n, ⌈
k

2
⌉+ j)− hq(n, ⌈

k

2
⌉)

≥ hq−1(n− 1, ⌊k
2
⌋)− hq−1(n− 1, ⌊k

2
⌋ − j)

(5)

for any j ≥ 1 such that ⌈k
2 ⌉+ j ≤ k − 1. Since the above

inequality is equivalent to

hq(n, ⌈
k

2
⌉+ j) + hq−1(n− 1, ⌊k

2
⌋ − j)

≥ hq(n, ⌈
k

2
⌉) + hq−1(n− 1, ⌊k

2
⌋),

it follows straightforwardly that the minimum value of
hq(n, x) + hq−1(n − 1, k − x) over x ∈ [⌈k

2 ⌉, k − 1] is
attained by x = ⌈k

2 ⌉.

We first need to understand the behavior of the hq(n, k)
numbers as k increases or decreases. Let |x| denote the
Hamming weight (number of 1’s) in the binary representa-
tion of integer x. We recall that the binomial coefficient

(
n
k

)
by definition evaluates to 0 when k < 0 or k > n. Similarly,
we define the boundary values of hq(n, k) for q = 0 and
k = 0 as h0(n, k) = 1 (for k > 0) and hq(n, 0) = 0.

Lemma 4.1. For any integers x, q, n such that 0 ≤ x ≤
2n − 1 and 0 ≤ q ≤ n, we have

hq(n, x+ 1) = hq(n, x) +

(
n− |x|
q − |x|

)
,

and for integers x, q, n such that 1 ≤ x ≤ 2n−1 and 1 ≤
q ≤ n, we have

hq−1(n−1, x−1) = hq−1(n−1, x)−
(
n− 1− |x− 1|
q − 1− |x− 1|

)
.

Proof. We prove the first formula, the second one then fol-
lows directly by applying the first one for x− 1, q − 1 and
n− 1.
For the boundary values of q and x, we have h0(n, 1) =
1 = 0 + 1 = h0(n, 0) +

(
n
0

)
, h0(n, x+ 1) = 1 = 1 + 0 =

h0(n, x) +
(
n−|x|
−|x|

)
for x ≥ 1, and hq(n, 1) =

(
n
q

)
=

0 +
(
n
q

)
= hq(n, 0) +

(
n−|0|
q−|0|

)
.

For the notrivial cases, suppose that q ≥ 1 and x ≥ 1. The
only difference between Hn,x and Hn,x+1 is that Hn,x+1

has one extra row, which is the binary representation of x
with zeroes padded to the left if needed. Let S be the set of
column indices where the last row of Hn,x+1 has a 1.
We first observe that dif(Hn,x(Q)) = dif(Hn,x+1(Q))

whenever S ̸⊆ Q ⊆ {1, 2, . . . , n}. To see this let i ∈ S\Q
and y be the number with binary representation having the
same entry as x in the positions belonging to Q and 0’s in
all other positions. Then y < x and Hn,x contains a row
which is the binary representation of y. Since this row of
Hn,x is equal to the last row of Hn,x+1 when only look-
ing at the columns with indices in Q, dif(Hn,x(Q)) =
dif(Hn,x+1(Q)).
Then we see that dif(Hn,x+1(Q) = dif(Hn,x(Q)) + 1
whenever S ⊆ Q. This is because there is no row in Hn,x

where all the columns with indices in S are equal to 1, since
the number of this row would be greater or equal to x.
So we are left with counting how many subsets Q of
{1, ..., n} satisfy S ⊆ Q and |Q| = q. This is exactly(
n−|S|
q−|S|

)
=
(
n−|x|
q−|x|

)
.

Corollary 4.2. For any integers q, n, x, j such that 0 ≤ q ≤
n, 0 ≤ x, 1 ≤ j and x+ j ≤ 2n, we have

hq(n, x+ j) = hq(n, x) +

x+j−1∑
i=x

(
n− |i|
q − |i|

)
.

Moreover, whenever 1 ≤ q ≤ n and 1 ≤ j ≤ x ≤ 2n−1, we
have

hq−1(n−1, x−j) = hq−1(n−1, x)−
x−1∑

i=x−j

(
n− 1− |i|
q − 1− |i|

)
,

and whenever 1 ≤ q ≤ n and 1 ≤ j ≤ x− 1 ≤ 2n−1, we
have

hq−1(n− 1, x− j − 1)

= hq−1(n− 1, x− 1)−
x−2∑

i=x−j−1

(
n− 1− |i|
q − 1− |i|

)
.

Proof. The first two formulae follow from Lemma 4.1 by
induction on j, the third formula follows from the second
by substituting x− 1 for x.

In view of this corollary, the inequality (5) is equivalent to
the claim that our goal is to prove that

⌈ k
2 ⌉+j−1∑
i=⌈ k

2 ⌉

(
n− |i|
q − |i|

)
≥

⌊ k
2 ⌋−1∑

i=⌊ k
2 ⌋−j

(
n− 1− |i|
q − 1− |i|

)

holds true for all feasible q, n, k and j.

We first show some useful properties of Hamming weights
which extend the following lemma from (Graham, 1970)
whose proof was finalized in (Jones & Torrence, 1999).
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Lemma 4.3. ((Graham, 1970; Jones & Torrence, 1999))
Let s, t be non-negative integers. Then there exists a bijec-
tive mapping θ : [0, r] → [s, s + r] such that |θ(k)| ≥ |k|
for every k ∈ [0, r].

We will need a generalization of this lemma whose proof
depends on the following observation:

Observation 4.4. Let x ≥ t be non-negative integers. Then
|x− t| ≥ |x| − |t|.

Proof. This follows directly from the standard subtraction
algorithm for integers in binary representation.

Lemma 4.5. Let s, r, t be non-negative integers such that
r, t ≥ 1 and s ≥ r + t − 1. Denote by T = [s, s + r − 1]
and B = [s− r− t+1, s− t]. Then there exists a bijective
mapping θ : T → B such that |θ(x)| ≥ |x| − |t| for all
x ∈ T .

Proof. Our proof works by induction on r. When r = 1,
we have T = {s} and B = {s − t}. The only possible
mapping θ then simply maps s to s − t and we see that
|θ(s)| = |s − t| ≥ |s| − |t| by Observation 4.4. Thus, the
base case r = 1 is established for all values of t ≥ 1.

Let r > 1. Create two matrices with r rows each

MT =


−−−−−−→
s+ r − 1

...
−−−→
s+ 1
−→s

 and MB =


−−→
s− t

−−−−−→
s− t− 1

...
−−−−−−−−−→
s− r − t+ 1


where −→x is the base 2 representation of x as a binary vector
with 0-s padded to the left so that all vectors have the same

length. Finally let M =

(
MT

MB

)
.

Reformulating the lemma in this matrix context we seek
a bijective mapping θ of the rows of MT to the rows
of MB such that |θ(x)| ≥ |x| − |t| holds true for every
row x of MT . (With a slight abuse of notation we write
θ : MT → MB .) The induction hypothesis states that this
holds true, for this value of t, if the number of rows of each
matrix is less than r.
Without loss of generality we may assume that the first
(leftmost) column of M contains at least one 0 and
at least one 1 (since we could disregard this column
otherwise). Then if we look at the first column of M ,
there will be a point where a 1 appears for the first time,
when moving through the rows from the bottom row up.
This could happen either in the MT part or in the MB

part of the matrix. We will deal with these 2 cases separately.

Case 1 (The first leftmost 1 appears in the MT part of the
matrix) We divide both the MT and MB matrices further

and write M as

M =


T1

T2

B2

B1


where the bottom row of T1 is the row where the first
1 appears (thus that row is 100...0), with T2 being the
remainder of MT , and we let B1 have the same number of
rows as T1. We will map T1 to B1 and T2 to B2. Since T2

and B2 have fewer rows than r (since T1 and B1 always
have at least one row) and are on the form specified by the
lemma since the smallest number in T2 are the same as in T
and the largest number in B2 is the same as in B and we
simply deleted some of the largest/smallest numbers of T
and B to create T2 and B2 respectively so it will still be
an interval. It follows by the induction hypothesis applied
to T2, B2 and r as the number of rows of T2, B2 that, for
the same value of t, there exists the required mapping
θ1 : T2 → B2. Note also that this is vacuously true if T2

and B2 are empty. Now if we ignore the first column of
T1, then T1({2, 3, ...}) is the binary representation of the
numbers 0, 1, ..., |T1| − 1. So by Lemma 4.3 there is a
mapping θ2 : T1({2, 3, ...}) → B1 such that |θ2(x)| ≥ |x|
for every x. Adding back the first column of T1 and
using the same mapping between the rows as θ2, we get a
mapping θ3 : T1 → B1 where |θ3(x)| ≥ |x| − 1 for every
x (since the Hamming weight of x increases by 1). Clearly
|x| − 1 ≥ |x| − |t| when t ≥ 1, hence combining θ1 and θ3
gives us a bijective mapping θ : T → B with the required
properties.

Case 2 (The first leftmost 1 appears in the MB part) We
divide the matrix in a similar way as in the first case

M =


T1

T2

B2

B1


so that the bottom row of B2 is the row where the first
1 appears in the leftmost column (so this row is 100...0)
and we let T2 have the same number of rows as B2. For
a binary vector x let x be the complement of x, so x =
(1, 1, 1, ..., 1) − x. For a binary matrix A, let A be the
matrix whose rows are the complements of the rows of A.

By the induction hypothesis, as there are fewer rows and we
have the same value of t, there is a mapping θ1 : T2 → B2

with the required properties. The top row of B1 is (011...1)
so if we look at B1, the top row will be (100...0), the next
row will be (100...01) and so on, meaning that if we ignore
the first column we are counting up from 0 in binary. Lemma
4.3 then gives us a mapping θ2 : B1({2, 3, ...}) → T1 with
|θ2(x)| ≥ |x| for every x. Adding back the first column but
keeping the row mapping we get a mapping θ3 : B1 → T1

6
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where |θ3(x)| ≥ |x| − 1. Now define θ4 : B1 → T1 by
θ4(x) = θ3(x) and let ||x|| be the length of the vector x.

|θ4(x)| − |x| = |θ3(x)| − |x|
= ||x|| − |θ3(x)| − (||x|| − |x|)
= |x| − |θ3(x)| (6)
≤ 1

To get (6) we use the fact that |θ3(x)| ≥ |x| − 1.

We will now look at the inverse mapping θ−1
4 : T1 → B1.

For any y ∈ T1, there is an x ∈ B1 such that θ4(x) = y.
We just showed that |θ4(x)| − |x| ≤ 1 which is the same as
|y| − |x| ≤ 1 which we can rewrite as |y| − |θ−1

4 (y)| ≤ 1.
Multiplying both sides by −1 we get |θ−1

4 (y)| ≥ |y| − 1.
Combining θ−1

4 and θ1 in the natural way we get the desired
mapping θ : T → B satisfying |θ(x)| ≥ |x| − 1 ≥ |x| − |t|
for every x.

Thus the lemma is proven for any r, t ≥ 1 and any s ≥
r + t− 1.

We are now set to prove that the sum in the first formula
of the Corollary 4.2 is always larger than the sums in the
second and third formulae. We will need the following well
known observation:

Observation 4.6. For any integers n, k, j such that 0 ≤
j ≤ k ≤ n, (

n

k

)
≥
(
n− j

k − j

)
.

Lemma 4.7. For all positive integers q, n, x, j such that
x+ j − 1 ≤ 2n and x− j ≥ 0,

x+j−1∑
i=x

(
n− |i|
q − |i|

)
≥

x−1∑
i=x−j

(
n− 1− |i|
q − 1− |i|

)
,

and if x− j ≥ 1, then

x+j−1∑
i=x

(
n− |i|
q − |i|

)
≥

x−2∑
i=x−j−1

(
n− 1− |i|
q − 1− |i|

)
.

Proof. We show that there exists a bijection θ from [x, x+
j−1] to [x− j, x−1] (or to [x− j−1, x−2], respectively)
such that |θ(i)| ≥ |i|−1 for all i. This will prove the lemma
since then for every term

(
n−|i|
q−|i|

)
in the sum of the left hand

side there will be a corresponding term in the sum on the
right side (

n− 1− |θ(i)|
q − 1− |θ(i)|

)
and we see that by Observation 4.6(

n− 1− |θ(i)|
q − 1− |θ(i)|

)
≤
(
n− 1− (|i| − 1)

q − 1− (|i| − 1)

)
=

(
n− |i|
q − |i|

)
.

So if such a bijection exists, then for every term in the sum
on the left hand side there will be a unique element in the
sum on the right hand side which is no greater than the
element on the left hand side. So then the sum on the left
hand side must be greater than or equal to the sum on the
right hand one. Now we just need to show that there exist
such bijections θ. We will use Lemma 4.5.
Case 1. Let s = x, r = j and t = 1. Then by Lemma 4.5
there is a mapping θ : [x, x+ j− 1] → [x− 1, x− j]} such
that |θ(i)| ≥ |i| − |t| = |i| − 1 for every i, which is the first
bijection we wanted.
Case 2. If we set t = 2, then Lemma 4.5 gives us a mapping
θ : [x, x + j − 1] → [x − 2, x − j − 1] such that |θ(i)| ≥
|i| − |t| = |i| − 1 for every i, which is the second bijection
we wanted.

We are now ready to prove Theorem 3.1.
Theorem 3.1. For any positive integers q, n, k where q ≤ n
and k ≤ 2n,

min
⌈ k

2 ⌉≤x≤k−1
hq(n, x) + hq−1(n− 1, k − x)

= hq(n, ⌈
k

2
⌉) + hq−1(n− 1, ⌊k

2
⌋).

Proof. We consider the two cases depending on whether k
is either even or odd.

Case 1 - k is even. Set x = k
2 and rewrite the left hand side

of Theorem 3.1 as

min
0≤j≤x−1

hq(n, x+ j) + hq−1(n− 1, x− j)

Then by the first and second part of Corollary 4.2 whenever
1 ≤ j ≤ x − 1, we can rewrite the expression which is
minimized as

hq(n, x) +

x+j−1∑
i=x

(
n− |i|
q − |i|

)
+ hq−1(n− 1, x)

−
x−1∑

i=x−j

(
n− 1− |i|
q − 1− |i|

)
By Lemma 4.7 we have

∑x+j−1
i=x

(
n−|i|
q−|i|

)
≥∑x−1

i=k−j

(
n−1−|i|
q−1−|i|

)
for any 1 ≤ j ≤ x − 1, which

means that the smallest value occurs when j = 0.
Case 2 - k is odd. Set x = ⌈k

2 ⌉ and rewrite the expression
of the left hand side of Theorem 3.1 as

min
0≤j≤x−1

hq(n, x+ j) + hq−1(n− 1, x− 1− j).

By the first and third part of Corollary 4.2 we can rewrite
the part which is minimized for 1 ≤ j ≤ x− 1 as

hq(n, x) +

x+j−1∑
i=x

(
n− |i|
q − |i|

)
+ hq−1(n− 1, x− 1)

7
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−
x−2∑

i=x−j−1

(
n− 1− |i|
q − 1− |i|

)
.

By Lemma 4.7 we have
∑x+j−1

i=x

(
n−|i|
q−|i|

)
≥∑x−2

i=k−j−1

(
n−1−|i|
q−1−|i|

)
for 1 ≤ j ≤ x − 1 so the

smallest value of the expression will occur for j = 0.

By Lemma 3.4 this proves Theorem 2.1.

5. Conclusion
We have proven a conjecture of (Ferri et al., 2024), to find a
binary matrix M minimizing mq(M), the sum of the num-
ber of distinct rows over all submatrices on q columns. Let
us consider the complexity of computing mq(M) given as
input the binary matrix M on k rows and n columns. There
is a straightforward algorithm with runtime O(nqkq log k).
The question arises if computing mq(M) is FPT (Fixed
Parameter Tractable, see Cygan et al. (2015)) when param-
eterized by q. In other words, is there an algorithm whose
runtime is polynomial in the size of M , with any exponen-
tial dependency restricted to q only? We leave this as an
open problem.
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