Counterfactual Explanations for Machine Learning

2024 MT4H International Workshop – Valencia, Spain January 11-13, 2024

Gabriele Tolomei

Department of Computer Science Sapienza University of Rome <u>tolomei@di.uniroma1.it</u>

UniPl (1999-2005)

UniPl (1999-2005)

UniVE (2008-2013)

UniPl (1999-2005)

UniVE (2008-2013)

Yahoo! Labs (2014-2017) January 12, 2024

UniPl (1999-2005)

UniVE (2008-2013)

Yahoo! Labs (2014-2017) January 12, 2024

UniPD (2017-2019)

UniPl (1999-2005)

Yahoo! Labs (2014-2017) January 12, 2024

UniPD (2017-2019)

UniVE (2008-2013)

Sapienza (2019-)

Human-Explainable

Sounds cool?

Check out the lab's <u>home page</u> (still under construction, sic!)

My Research Group: People

PhD Students

Cesare Campagnano Sapienza University of Rome PhD Student in Computer Science

A y 🖪 8 🗘

Edoardo Gabrielli Sapienza University of Rome PhD Student in

Cybersecurity

Collaborators

Flavio Giorgi

Sapienza University of Rome

PhD Student in Computer

Science

🔤 🕋 🛅 🞖 🔘

PhD Student in Data

Giovanni Trappolini Sapienza University of Rome Postdoctoral Researcher Y 🖪 S 🙆 🗘

Sapienza University of Rome PhD Student in Data Science

🖂 in

Ziheng Chen Walmart Labs, Sunnyvale, CA, USA **Research Scientist**

S 8 0 0

HERCOLE Lab

Fabio Pinelli IMT School for Advanced Studies Lucca Assistant Professor of Computer Science

y 🖬 🖇 💿 🔿

Fabrizio Silvestri Sapienza University of Rome Full Professor of

Computer Science **3 🚯 y 🛅 8 (0 ()**

Federico Siciliano Sapienza University of Rome

Neural Networks MLP CNN LSTM Transformers GAN GNN Ensemble Random Forest XGBoost Performance SVM Decision K-NN Trees Graphical Models HMM CRF Linear Models Linkeg Logkeg

There has been a trend for AI/ML models to get more powerful

There has been a trend for AI/ML models to get more powerful

Performance improvements often come at a cost of **compromised explainability**

There has been a trend for AI/ML models to get more powerful

Performance improvements often come at a cost of **compromised explainability**

This is partly due to the **increasing model complexity** (e.g., number of parameters, deep network architectures)

Simpler models may be **less accurate** but **more explainable**

e.g., linear/logistic regression coefficients are interpretable by design

Explainability

Simpler models may be **less accurate** but **more explainable**

e.g., linear/logistic regression coefficients are interpretable by design

Simple Decision Boundary Surface

Explainability

Complex models are **more expressive** but **opaque**

e.g., multi-billion parameter NNs

Explainability

Complex models are **more expressive** but **opaque** e.g., multi-billion parameter NNs

Convoluted Decision Boundary Surface

Explainability

https://medium.com/@BonsaiAl/what-do-we-want-from-explainable-ai-5ed12cb36c07

 AI/ML systems are widely deployed to support decision-making processes in several application contexts

- AI/ML systems are widely deployed to support decision-making processes in several application contexts
- In many domains, highly accurate predictions are not enough!

- AI/ML systems are widely deployed to support decision-making processes in several application contexts
- In many domains, highly accurate predictions are not enough!
 - Healthcare: A physician must be able to tell their patient the rationale behind an AI/ML-based diagnosis

- AI/ML systems are widely deployed to support decision-making processes in several application contexts
- In many domains, highly accurate predictions are not enough!
 - Healthcare: A physician must be able to tell their patient the rationale behind an AI/ML-based diagnosis
 - Finance: A banker must be able to tell their customer why they won't grant them a loan

- AI/ML systems are widely deployed to support decision-making processes in several application contexts
- In many domains, highly accurate predictions are not enough!
 - Healthcare: A physician must be able to tell their patient the rationale behind an AI/ML-based diagnosis
 - Finance: A banker must be able to tell their customer why they won't grant them a loan
- AI/ML-based predictions should be comprehensible to every stakeholder (including non-experts)

- Several attempts have been made to promote XAI as part of broader data privacy regulation initiatives
 - EU GDPR (General Data Protection Regulation)
 - HIPAA (Health Insurance Portability and Accountability Act) Privacy Rule
 - CCPA (California Consumer Privacy Act)
 - PCI DSS (Payment Card Industry Data Security Standard)
 - NIST AI Risk Management Framework

۲

. . .

Taxonomy of XAI Methods

Counterfactual Explanations: Intuition

 Post-hoc local explanation method to interpret predictions of individual instances

Counterfactual Explanations: Intuition

- Post-hoc local explanation method to interpret predictions of individual instances
- Search for modified versions of input samples that result in alternative output responses from the predictive model

Counterfactual Explanations: Intuition

- Post-hoc local explanation method to interpret predictions of individual instances
- Search for modified versions of input samples that result in alternative output responses from the predictive model
- Explanations take the following form:

"If A had been different, B would not have occurred"

Will I have diabetes?

Will I have diabetes?

Will I have diabetes?

Yes/No + Explanation

FactualAge45

Age	Gender	Exercise Level	Fat Level
45	М	Low	High

Will I have diabetes?

Yes/No + Explanation

FactualAgeGenderExercise
LevelFat Level45MLowHigh
Counterfactual Explanations: Example

Will I have diabetes?

Yes/No + Explanation

Factual	Age	Gender	Exercise Level	Fat Level	f (. 🔗) — Vee
	45	М	Low	High	

Counterfactual	Age	Gender	Exercise Level	Fat Level
	45	М	Medium	Low

Counterfactual Explanations: Example

Yes/No + Explanation

Factual	Age	Gender	Exercise Level	Fat Level	f (. 🔗) — Vee
	45	М	Low	High	

Counterfactual	Age	Gender	Exercise Level	Fat Level	$f(\mathbf{s}) = \mathbf{No}$
	45	М	Medium	Low	

Counterfactual Explanations: Example

Yes/No + Explanation

Factual	Age	Gender	Exercise Level	Fat Level	$f(\mathbf{A} \geq \mathbf{V} = \mathbf{V} = \mathbf{V}$
	45	М	Low	High	

Counterfactual
LevelAgeGenderExercise
LevelFat Level $f(\begin{bmatrix} f(\begin{bmatrix} f(\begin{bmatri$

Explanation:

You will not develop diabetes if you increase your exercise level and lower your fat level

Finding Counterfactual Examples (CFs)

Given an input sample **x**, there may be (infinitely?) many counterfactual examples

We need to restrict our search to "some" of them!

Finding the "Optimal" CF (for a given x)

$$\widetilde{\boldsymbol{x}}^* = \operatorname{argmin}_{\widetilde{\boldsymbol{x}}} \{ \ell_{\operatorname{CF}}(\boldsymbol{x}, \widetilde{\boldsymbol{x}}; f) + \lambda \ell_{\operatorname{dist}}(\boldsymbol{x}, \widetilde{\boldsymbol{x}}) \}$$

counterfactual loss penalizes if the CF goal is **not** met

CF goal:
$$f(\widetilde{oldsymbol{x}})
eq f(oldsymbol{x})$$

Finding the "Optimal" CF (for a given x)

$$\widetilde{\boldsymbol{x}}^* = \operatorname{argmin}_{\widetilde{\boldsymbol{x}}} \{ \ell_{\operatorname{CF}}(\boldsymbol{x}, \widetilde{\boldsymbol{x}}; f) + \lambda \ell_{\operatorname{dist}}(\boldsymbol{x}, \widetilde{\boldsymbol{x}}) \}$$

distance loss

discourages the CF to be too far away from the original input **x**

e.g., L1-norm
$$|\widetilde{x}-x|$$

Finding the "Optimal" CF (for a given **x**)

 $\widetilde{\boldsymbol{x}}^* = \operatorname{argmin}_{\widetilde{\boldsymbol{x}}} \{ \ell_{\operatorname{CF}}(\boldsymbol{x}, \widetilde{\boldsymbol{x}}; f) + \lambda \ell_{\operatorname{dist}}(\boldsymbol{x}, \widetilde{\boldsymbol{x}}) \}$

s.t.: $1 \le p_{\max} \le m$, where $1 \le m \le |\mathcal{F}| \le n$ Limit on the number of Set of "actionable" "actionable" features to change features

Evaluation Metrics for CFs

Validity (1-Fidelity) Measures the ratio of generated CFs that actually meet the counterfactual goal (the higher the better)

Evaluation Metrics for CFs

Validity (1-Fidelity) Measures the ratio of generated CFs that actually meet the counterfactual goal (the higher the better)

Proximity

Computes the distance between a (valid) CF and the original input sample (the lower the better)

L1-norm or L2-norm

Evaluation Metrics for CFs

Validity (1-Fidelity) Measures the ratio of generated CFs that actually meet the counterfactual goal (the higher the better)

Proximity

Computes the distance between a (valid) CF and the original input sample (the lower the better)

L1-norm or L2-norm

Sparsity

Indicates the number of features modified to obtain the CF (the lower the better)

L0-norm

Sahil, V., Dickerson, J. and Hines, K., 2022. Counterfactual Explanations for Machine Learning: A Review. arXiv:2010.10596.

Our Contributions to CF Explanations

Our Contributions to CF Explanations

ReLAX: Reinforcement Learning Agent Explainer for Arbitrary Predictive Models

Chen, Z., Silvestri, F., Wang, J., Zhu, H., Ahn, H. and Tolomei, G., 2022, October. ReLAX: Reinforcement Learning Agent Explainer for Arbitrary Predictive Models. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 252-261).

Chen, Z., Silvestri, F., Tolomei, G., Wang, J., Zhu, H. and Ahn, H., 2022. Explain the Explainer: Interpreting Model-Agnostic Counterfactual Explanations of a Deep Reinforcement Learning Agent. IEEE Transactions on Artificial Intelligence.

How Do We Find g_{θ^*} ?

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \left\{ \mathcal{L}(g_{\boldsymbol{\theta}}; \mathcal{D}, h_{\boldsymbol{\omega}}) \right\}$$

s.t.: $p_{\max} \leq m$

$$\mathcal{L}(g_{\theta}; \mathcal{D}, h_{\omega}) = \frac{1}{|\mathcal{D}|} \sum_{\boldsymbol{x} \in \mathcal{D}} \ell_{\mathrm{CF}}(\boldsymbol{x}, g_{\theta}(\boldsymbol{x}); h_{\omega}) + \lambda \ell_{\mathrm{dist}}(\boldsymbol{x}, g_{\theta}(\boldsymbol{x}))$$

from *instance*-level (local) to *dataset*-level (global) explanations

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \left\{ \mathcal{L}(g_{\boldsymbol{\theta}}; \mathcal{D}, h_{\boldsymbol{\omega}}) \right\}$$

s.t.: $p_{\max} \leq m$

$$\mathcal{L}(g_{\theta}; \mathcal{D}, h_{\omega}) = \frac{1}{|\mathcal{D}|} \sum_{\boldsymbol{x} \in \mathcal{D}} \ell_{\mathrm{CF}}(\boldsymbol{x}, g_{\theta}(\boldsymbol{x}); h_{\omega}) + \lambda \ell_{\mathrm{dist}}(\boldsymbol{x}, g_{\theta}(\boldsymbol{x}))$$

from optimizing to learning

 \boldsymbol{x}

1) The RL Agent picks a feature to modify

2) The RL Agent chooses the magnitude of the feature change

1) The RL Agent picks a feature to modify

2) The RL Agent chooses the magnitude of the feature change

The RL Agent terminates when the CF goal is met!

We formulate the problem of finding the optimal CF generator g_{θ^*} as an MDP

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, p_0, r, \gamma\}$$

We formulate the problem of finding the optimal CF generator g_{θ^*} as an MDP

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, p_0, r, \gamma\}$$

States ${\mathcal S}$ The current modified sample along with the features changed so far

We formulate the problem of finding the optimal CF generator g_{θ^*} as an MDP

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, p_0, r, \gamma\}$$

States S The current modified sample along with the features changed so far **Actions** A Discrete-Continuous Hybrid Actions: *Which* feature, *What* change

We formulate the problem of finding the optimal CF generator g_{θ^*} as an MDP

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, p_0, r, \gamma\}$$

States S The current modified sample along with the features changed so far **Actions** A Discrete-Continuous Hybrid Actions: *Which* feature, *What* change **Transitions** T Deterministic function moving from one state to another

We formulate the problem of finding the optimal CF generator g_{e^*} as an MDP

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, p_0, r, \gamma\}$$

States S The current modified sample along with the features changed so far Actions A Discrete-Continuous Hybrid Actions: Which feature, What change Transitions T Deterministic function moving from one state to another Reward Υ Trade-off between CF goal and the distance of the CF from the original input

We formulate the problem of finding the optimal CF generator g_{e^*} as an MDP

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, p_0, r, \gamma\}$$

States S The current modified sample along with the features changed so far **Actions** A Discrete-Continuous Hybrid Actions: *Which* feature, *What* change **Transitions** T Deterministic function moving from one state to another **Reward** Υ Trade-off between CF goal and the distance of the CF from the original input

We find the **optimal policy** to apply the best sequence of actions to each input

Our Proposed Framework

2024 MT4H International Workshop – Valencia, Spain

Experiments: Datasets and Tasks

Dataset	N. of Instances	N. of Features	Task
Breast Cancer [5]	699	10 (numerical)	classification
Diabetes [2]	768	8 (numerical)	classification
Sonar [3]	208	60 (numerical)	classification
Wave [4]	5,000	21 (numerical)	classification
Boston Housing [1]	506	14 (mixed)	regression

Experiments: (Black-Box) Models

Dataset [Best Model]	Structure	Acc. (▲)/RMSE (♦)
Breast Cancer [RF]	{#trees=100}	0.99 (▲)
Diabetes [AdaBoost]	{#trees=100}	0.79 (▲)
Wave [XGBoost]	{#trees=100}	0.95 (▲)
Breast Cancer [MLP]	{#L1=64, #L2=128}	1.00 (▲)
Sonar [MLP]	{#L1=256, #L2=256}	0.90 (▲)
Wave [MLP]	{#L1=100, #L2=200}	0.97 (▲)
Boston Housing [MLP-ReG]	{#L1=50, #L2=128}	3.36 (♦)
Experiments: Sparsity vs. Validity

ReLAX achieves the **best trade-off** between sparsity and validity of the generated CFs

Sparsity

	Validity (Sparsity)			
Threshold (δ)	ReLAX-Global	RELAX-LOCAL		
0.20	$0.81 \pm 0.09 \ (3.02 \pm 0.17)$	$0.87 \pm 0.05 \ (3.10 \pm 0.18)$		
0.40	$0.74 \pm 0.06 \ (3.09 \pm 0.16)$	$0.81 \pm 0.05 \ (3.18 \pm 0.16)$		
0.60	0.70 ± 0.06 (3.21 \pm 0.12)	$0.77 \pm 0.03 (3.28 \pm 0.09)$		

Dataset-level Explainer

	Validity (Sparsity)			
Threshold (δ)	ReLAX-Global	ReLAX-Local		
0.20	$0.81 \pm 0.09 \ (3.02 \pm 0.17)$	$0.87 \pm 0.05 \ (3.10 \pm 0.18)$		
0.40	0.74 ± 0.06 (3.09 \pm 0.16)	$0.81 \pm 0.05 \ (3.18 \pm 0.16)$		
0.60	0.70 ± 0.06 (3.21 \pm 0.12)	$0.77 \pm 0.03 (3.28 \pm 0.09)$		

Instance-level Explainer

	Validity (Sparsity)			
Threshold (δ)	ReLAX-Global	RELAX-LOCAL		
0.20	$0.81 \pm 0.09 \ (3.02 \pm 0.17)$	$0.87 \pm 0.05 \; (3.10 \pm 0.18)$		
0.40	0.74 ± 0.06 (3.09 ± 0.16)	$0.81 \pm 0.05 \; (3.18 \pm 0.16)$		
0.60	0.70 ± 0.06 (3.21 \pm 0.12)	$0.77 \pm 0.03 \ (3.28 \pm 0.09)$		

In the case of regression task, the CF goal must be adapted with a validity threshold (δ): $|h_{\omega}(\tilde{x}) - h_{\omega}(x)| \ge \delta, \ \delta \in \mathbb{R}_{>0}$

	Validity (Sparsity)			
Threshold (δ)	ReLAX-Global	RELAX-LOCAL		
0.20	$0.81 \pm 0.09 \ (3.02 \pm 0.17)$	$0.87 \pm 0.05 \; (3.10 \pm 0.18)$		
0.40	0.74 ± 0.06 (3.09 ± 0.16)	$0.81 \pm 0.05 \ (3.18 \pm 0.16)$		
0.60	0.70 ± 0.06 (3.21 \pm 0.12)	$0.77 \pm 0.03 (3.28 \pm 0.09)$		

In the case of regression task, the CF goal must be adapted with a validity threshold (δ): $|h_{\omega}(\tilde{x}) - h_{\omega}(x)| \ge \delta, \ \delta \in \mathbb{R}_{>0}$

The higher the threshold the harder is for ReLAX to find a valid CF

Experiments: Proximity vs. Generation Time

Metric	Dataset [Models]	CF Generation Methods			
		RELAX-GLOBAL	RELAX-LOCAL	LORE	MACE
Proximity	Breast Cancer [RF, MLP]	[4.46, 5.92]	[4.49, 5.87]	[4.63, 5.63]	[4.47, N/A]
	Diabetes [ADABOOST]	[4.41]	[4.50]	[4.76]	[N/A]
	Sonar [MLP]	[7.32]	[7.66]	[7.36]	[N/A]
	Wave [XGBoost, MLP]	[5.93, 6.38]	[6.02, 6.50]	[6.60, 6.41]	[N/A, N/A]
	Boston Housing [MLP-Reg]	[5.10]	[5.36]	[N/A]	[N/A]
Generation Time (secs.)	*	1500	1320	2100	2280

ReLAX-Global generates CFs that are closer to the original input instance but **ReLAX-Local** takes less time on average

Experiments: The Hyperparameter λ

 λ controls the balance between sparsity and validity

Experiments: The Hyperparameter λ

 λ controls the balance between sparsity and validity

Larger values of λ force the agent to prefer sparser CFs at the expense of lower validity

Who Explains the Explainer?

The complex network structure of a DRL policy learned for CF generation poses a challenge for understanding the decision logic of the agent

Who Explains the Explainer?

The complex network structure of a DRL policy learned for CF generation poses a challenge for understanding the decision logic of the agent

To explain the decision process of a learned policy, we **distill** knowledge from the policy to a naturally-interpretable **decision tree**

We apply ReLAX to generate CF explanations for a binary classifier (XGBoost with 500 trees) trained to predict the risk of mortality for COVID-19

We apply ReLAX to generate CF explanations for a binary classifier (XGBoost with 500 trees) trained to predict the risk of mortality for COVID-19

We use generated CFs to sketch an action plan to lower the risk of mortality

We apply ReLAX to generate CF explanations for a binary classifier (XGBoost with 500 trees) trained to predict the risk of mortality for COVID-19

We use generated CFs to sketch an action plan to lower the risk of mortality

- Decrease death rate
- Decrease unemployment rate
- Increase nurse rate per 10,000 people
- Decrease urban population rate
- Decreasing obesity prevalence

We apply ReLAX to generate CF explanations for a binary classifier (XGBoost with 500 trees) trained to predict the risk of mortality for COVID-19

We use generated CFs to sketch an action plan to lower the risk of mortality

- Decrease death rate
- Decrease unemployment rate
- Increase nurse rate per 10,000 people
- Decrease urban population rate
- Decreasing obesity prevalence

As obvious as they sound, many countries have suggested or enacted similar strategies to counter the COVID-19 pandemic (see <u>here</u> and <u>here</u>)

• Attaching (human-understandable) explanations to accurate ML/AI model predictions is crucial in many critical domains

- Attaching (human-understandable) explanations to accurate ML/AI model predictions is crucial in many critical domains
- If we don't want to trade accuracy for explainability, we need to develop post-hoc explainers for complex, black-box models

- Attaching (human-understandable) explanations to accurate ML/AI model predictions is crucial in many critical domains
- If we don't want to trade accuracy for explainability, we need to develop post-hoc explainers for complex, black-box models
- Counterfactual examples (CFs) are promising tools to generate actionable explanations

- Attaching (human-understandable) explanations to accurate ML/AI model predictions is crucial in many critical domains
- If we don't want to trade accuracy for explainability, we need to develop post-hoc explainers for complex, black-box models
- Counterfactual examples (CFs) are promising tools to generate actionable explanations
- We present a state-of-the-art CF generation method based on reinforcement learning and its application to a real use case

- Counterfactual explanation is a very trendy research topic! A few possible open challenges are:
 - Developing new CF generation methods (e.g., based on/inspired by diffusion models)

- Counterfactual explanation is a very trendy research topic! A few possible open challenges are:
 - Developing new CF generation methods (e.g., based on/inspired by diffusion models)
 - Generating CFs for new prediction settings (e.g., sequential recommender systems, anomaly detection tools)

- Counterfactual explanation is a very trendy research topic! A few possible open challenges are:
 - Developing new CF generation methods (e.g., based on/inspired by diffusion models)
 - Generating CFs for new prediction settings (e.g., sequential recommender systems, anomaly detection tools)
 - Incorporating personalization into CFs (not every actionable feature has the same weight across different input samples)

- Counterfactual explanation is a very trendy research topic! A few possible open challenges are:
 - Developing new CF generation methods (e.g., based on/inspired by diffusion models)
 - Generating CFs for new prediction settings (e.g., sequential recommender systems, anomaly detection tools)
 - Incorporating personalization into CFs (not every actionable feature has the same weight across different input samples)
 - Extracting natural language explanations from generated CFs

Suggested References

- Tolomei, G., Silvestri, F., Haines, A. and Lalmas, M., 2017. Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 465-474).
- Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S. and Turini, F., 2019. Factual and Counterfactual Explanations for Black Box Decision Making. IEEE Intelligent Systems, 34(6), pp.14-23.
- Le, T., Wang, S. and Lee, D., 2020. GRACE: Generating Concise and Informative Contrastive Sample to Explain Neural Network Model's Prediction. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 238-248).
- Mothilal, R.K., Sharma, A. and Tan, C., 2020. Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 607-617).
- Karimi, A.H., Barthe, G., Balle, B. and Valera, I., 2020. Model-Agnostic Counterfactual Explanations for Consequential Decisions. In International Conference on Artificial Intelligence and Statistics (pp. 895-905). PMLR.
- Lucic, A., Oosterhuis, H., Haned, H. and de Rijke, M., 2022. FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 5, pp. 5313-5322).
- Chen, Z., Silvestri, F., Wang, J., Zhu, H., Ahn, H. and Tolomei, G., 2022. ReLAX: Reinforcement Learning Agent Explainer for Arbitrary Predictive Models. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 252-261).
- Chen, Z., Silvestri, F., Tolomei, G., Wang, J., Zhu, H. and Ahn, H., 2022. Explain the Explainer: Interpreting Model-Agnostic Counterfactual Explanations of a Deep Reinforcement Learning Agent. IEEE Transactions on Artificial Intelligence.
- Lucic, A., Ter Hoeve, M.A., Tolomei, G., De Rijke, M. and Silvestri, F., 2022. CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks. In International Conference on Artificial Intelligence and Statistics (pp. 4499-4511). PMLR.
- Chen, Z., Silvestri, F., Wang, J., Zhang, Y., Huang, Z., Ahn, H. and Tolomei, G., 2022. Grease: Generate Factual and Counterfactual Explanations for GNN-based Recommendations. arXiv preprint arXiv:2208.04222.
- Guidotti, R., 2022. Counterfactual Explanations and How to Find Them: Literature Review and Benchmarking. Data Mining and Knowledge Discovery, pp.1-55.

January 12, 2024

Let's Collaborate!