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Performance vs. Explainability Trade-Off

eur‘al Networks \
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There has been a trend for Al/ML
models to get more powerful

‘ Performance improvements often come at
\7 77, )\ a cost of compromised explainability

Performance ~ Complexity

This is partly due to the increasing
model complexity (e.g., number of
parameters, deep network architectures)

Explainabili’ry
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Performance vs. Explainability Trade-Off

Neural Networks
MLP CNN LsTM

but more explainable
e.g., linear/logistic regression coefficients are
interpretable by design
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Performance vs. Explainability Trade-Off

Simpler models may be less accurate

but more explainable
e.g., linear/logistic regression coefficients are
interpretable by design

Neural Networks
MLP CNN LsTM
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Performance vs. Explainability Trade-Off
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e.g., multi-billion parameter NNs
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Performance vs. Explainability Trade-Off
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The Need for Explainable Al (XAl)
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https://medium.com/@BonsaiAl/what-do-we-want-from-explainable-ai-5ed12cb36c07
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The Need for Explainable Al (XAl)

* AIl/ML systems are widely deployed to support decision-making
processes in several application contexts
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The Need for Explainable Al (XAl)

* AIl/ML systems are widely deployed to support decision-making
processes in several application contexts
* In many domains, highly accurate predictions are not enough!

« Healthcare: A physician must be able to tell their patient the rationale
behind an Al/ML-based diagnosis

. A banker must be able to tell their customer why they won't grant
them a loan

* Al/ML-based predictions should be comprehensible to every
stakeholder (including non-experts)
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The Need for Explainable Al (XAl)

« Several attempts have been made to promote XAl as part of

broader data privacy regulation initiatives

EU GDPR (General Data Protection Regulation)

HIPAA (Health Insurance Portability and Accountability Act) Privacy
Rule

CCPA (California Consumer Privacy Act)

PCI DSS (Payment Card Industry Data Security Standard)

NIST Al Risk Management Framework
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Taxonomy of XAl Methods
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Counterfactual Explanations: Intuition

« Post-hoc local explanation method to interpret predictions of
individual instances
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Counterfactual Explanations: Intuition

« Post-hoc local explanation method to interpret predictions of

individual instances
« Search for modified versions of input samples that result in

alternative output responses from the predictive model
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Counterfactual Explanations: Intuition

« Post-hoc local explanation method to interpret predictions of

individual instances
« Search for modified versions of input samples that result in

alternative output responses from the predictive model
« Explanations take the following form:

“If A had been different, B would not have occurred”
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Counterfactual Explanations
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Counterfactual Explanations: Example

Al/ML model

Will | have diabetes?

Yes/No + Explanation

Age Gender Exercise Fat Level
Level
45 M Low High
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Counterfactual Explanations: Example
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Will | have diabetes?

Yes/No + Explanation

Age Gender Exercise Fat Level
Level
45 M Low High
Age Gender Exercise Fat Level
Level
45 M Medium Low
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Counterfactual Explanations: Example

Al/ML model

Will | have diabetes?

Yes/No + Explanation

Age Gender Exercise Fat Level
Level
45 M Low High
Counterfactual Age Gender Exercise Fat Level
8 Level
@ 45 M Medium Low
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Counterfactual Explanations: Example

Will | have diabetes?

Counterfactual

A

Yes/No + Explanation

vl W
#\

Age Gender Exercise Fat Level
Level
45 M Low High
Age Gender Exercise Fat Level
Level
45 M Medium Low

Al/ML model

[ You will not develop diabetes if you increase your exercise level and lower your fat level

Explanation:

]

January 12, 2024
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Finding Counterfactual Examples (CFs)
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Given an input sample x,
there may be (infinitely?)
many counterfactual
examples

We need to restrict our
search to “some” of them!
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Findl

%

L

Januar y 12, 2024

ng the "Optimal” CF (for a given x)

— argming{fcp(a), i, f) -+ )\edist<w7 5)}

counterfactual loss
penalizes if the CF goal
IS hot met

CF goal: f(x) # f(x)
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Finding the “Optimal” CF (for a given x)

N* ~

€r = argming{ﬁcp(a}, £ . f) + )\édist<w7 5)}

distance loss
discourages the CF to be too far
away from the original input x

e.g., L1-norm |i — 33|
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Finding the “Optimal” CF (for a given x)

%

€r = argming{écp(a}, %; f) + )\edist(wa 55)}

St 1 < Pmax < m,where 1 <m < |F| <n

|

Limit on the number of
“actionable” features to change
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Evaluation Metrics for CFs

Validity (1-Fidelity)
Measures the ratio of
generated CFs that
actually meet the
counterfactual goal
(the higher the better)
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Evaluation Metrics for CFs

Validity (1-Fidelity)
Measures the ratio of
generated CFs that
actually meet the
counterfactual goal
(the higher the better)

Proximity
Computes the distance
between a (valid) CF and
the original input sample
(the lower the better)

L7-norm or L2-norm

January 12, 2024
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Evaluation Metrics for CFs

Validity (1-Fidelity)
Measures the ratio of
generated CFs that
actually meet the

counterfactual goal
(the higher the better)

Proximity
Computes the distance
between a (valid) CF and
the original input sample
(the lower the better)

L7-norm or L2-norm

Sparsity
Indicates the number of
features modified to
obtain the CF
(the lower the better)

LO-norm

Sahil, V., Dickerson, J. and Hines, K., 2022. Counterfactual Explanations for Machine Learning: A Review. arXiv:2010.10596.

January 12, 2024
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https://arxiv.org/abs/2010.10596

Our Contributions to CF Explanations
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Our Contributions to CF Explanations
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RelLAX:
Reinforcement Learning Agent Explainer
for Arbitrary Predictive Models

Chen, Z., Silvestri, F., Wang, J., Zhu, H., Ahn, H. and Tolomei, G., 2022, October. ReLAX: Reinforcement Learning Agent Explainer for Arbitrary Predictive
Models. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 252-261).

Chen, Z., Silvestri, F., Tolomei, G., Wang, J., Zhu, H. and Ahn, H., 2022. Explain the Explainer: Interpreting Model-Agnostic Counterfactual Explanations
of a Deep Reinforcement Learning Agent. IEEE Transactions on Atrtificial Intelligence.



Finding the "Optimal” CF Generator

black-box model

counterfactual generator

h : increase f; decrease f;
hw w(w) > Jo* ‘ J6 (a:) ] ﬁ} ] LJ 1]
, M 7
T optimal counterfactual
example
1680 0 O D
€L h (Z°) # hw ()

original example

January 12, 2024

Counterfactual Goal
works both for classification
and regression tasks

2024 MT4H International Workshop — Valencia, Spain
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Finding the "Optimal” CF Generator

black-box model

counterfactual generator
increase f; deci mfﬁf

A

hw he (:B) | ‘ 9o (m)

> Jo* ‘ >{I£|IILJIII

T
optimal counterfactual

A

example

L1 T T

[ T 111

ho (Z") # hw ()

original example

January 12, 2024

How Do We Find g,,?
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Finding the "Optimal” CF Generator

0" = argmin, {/.3(99; D, h.) }

L(ge;D, he) ZKCF T, go(T); he) + Mast(T, go(T))

e
from instance-level (local) to dataset-level (global) explanations
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Finding the "Optimal” CF Generator

0" = argmin, {ﬁ(ge; D, h.) }

Z ler(x, go(x); he) + Maist (2, go())

from optimizing to learning
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ReLAX: Intuition
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ReLAX: Intuition
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black-box model
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ReLAX: Intuition

0.2

blue

20

red

L

January 12, 2024

black-box model
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ReLAX: Intuition

0.2 |<— 1) The RL Agent picks
a feature to modify
blue
RL Agent
20
o black-box model
X
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ReLAX: Intuition

0.7 |« 2) The RL Agent
chooses the magnitude
blue of the feature change
RL Agent
20
o black-box model
T
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ReLAX: Intuition
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black-box model
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ReLAX: Intuition

1) The RL Agent picks
a feature to modify

0.7 —

blue

RL Agent

20 |+

black-box model
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ReLAX: Intuition

07 | — 2) The RL Agent
chooses the magnitude
blue of the feature change
RL Agent
5 |-
o black-box model
T
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ReLAX: Intuition
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black-box model
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ReLAX: Intuition

January 12, 2024

0.7
blue The RL Agent
terminates when the
5 CF goal is met!
RL Agent
red
T

2024 MT4H International Workshop — Valencia, Spain
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Markov Decision Process Formulation

We formulate the problem of finding the optimal CF generator g,. as an MDP

M = {87 A) T7 Po, T, /Y}
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Markov Decision Process Formulation

We formulate the problem of finding the optimal CF generator g,. as an MDP

M = {87 Aa T? Po, T, 7}

States S The current modified sample along with the features changed so far
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Markov Decision Process Formulation

We formulate the problem of finding the optimal CF generator g,. as an MDP

M = {87 *’47 T7 Po, T, /Y}

States S The current modified sample along with the features changed so far

Actions A Discrete-Continuous Hybrid Actions: Which feature, What change
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Markov Decision Process Formulation

We formulate the problem of finding the optimal CF generator g, as an MDP

M = {87 *’47 T7 Po, T, /Y}

States S The current modified sample along with the features changed so far
Actions A Discrete-Continuous Hybrid Actions: Which feature, What change

Transitions ] Deterministic function moving from one state to another

Reward 1" Trade-off between CF goal and the distance of the CF from the original input

January 12, 2024 2024 MT4H International Workshop — Valencia, Spain 68



Markov Decision Process Formulation

We formulate the problem of finding the optimal CF generator g,. as an MDP

M = {87 A) T7 Po, T, /Y}

States S The current modified sample along with the features changed so far
Actions A Discrete-Continuous Hybrid Actions: Which feature, What change

Transitions ] Deterministic function moving from one state to another

Reward 1" Trade-off between CF goal and the distance of the CF from the original input

We find the optimal policy to apply the best sequence of actions to each input
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Our Proposed Framework
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Experiments: Datasets and Tasks

Dataset N. of Instances | N. of Features Task
Breast Cancer [5] 699 10 (numerical) | classification
Diabetes [2] 768 8 (numerical) classification
Sonar [3] 208 60 (numerical) | classification
Wave [4] 5,000 21 (numerical) | classification
Boston Housing [1] 506 14 (mixed) regression

January 12, 2024 2024 MT4H International Workshop — Valencia, Spain



Experiments: (Black-Box) Models

Dataset [Best Model |

Structure

Acc. (A)/RMSE (¢)

Breast Cancer [RF] {#trees=100} 0.99 (A)
Diabetes [ADABOOST] {#trees=100} 0.79 (A)
Wave [ XGBoosT] {#trees=100} 0.95 (A)
Breast Cancer [MLP] {#L1=64, #1.2=128} 1.00 (A)
Sonar [MLP] {#L1=256, #L.2=256} 0.90 (A)
Wave [MLP] {#L1=100, #L.2=200} 0.97 (A)

Boston Housing [ MLP-REG]

{#L1=50, #L.2=128}

3.36 (4)

January 12, 2024 2024 MT4H International Workshop — Valencia, Spain
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Experiments: Sparsity vs. Validity
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Sparsity vs. Validity: The Boston Housing

Validity (Sparsity)
Threshold () RELAX-GLOBAL RELAX-LocAL
0.20 0.81 £0.09(3.02 £0.17) | 0.87 £0.05 (3.10 £ 0.18)
0.40 0.74 £0.06 (3.09 £ 0.16) | 0.81 +£0.05 (3.18 £ 0.16)
0.60 0.70 £0.06 (3.21 £ 0.12) | 0.77 = 0.03 (3.28 £ 0.09)

Dataset-level
Explainer

January 12, 2024 2024 MT4H International Workshop — Valencia, Spain



Sparsity vs. Validity: The Boston Housing

Validity (Sparsity)
Threshold () RELAX-GLOBAL RELAX-LocAL
0.20 0.81 £0.09 (3.02 £0.17) | 0.87 £0.05 (3.10 £ 0.18)
0.40 0.74 £0.06 (3.09 £ 0.16) | 0.81 +£0.05 (3.18 £ 0.16)
0.60 0.70 £0.06 (3.21 £ 0.12) | 0.77 = 0.03 (3.28 £ 0.09)

Instance-level
Explainer

January 12, 2024 2024 MT4H International Workshop — Valencia, Spain



Sparsity vs. Validity: The Boston Housing

Validity (Sparsity)
Threshold () RELAX-GLOBAL RELAX-LocAL
0.20 0.81 £0.09(3.02 £0.17) | 0.87 £0.05 (3.10 £ 0.18)
0.40 0.74 £0.06 (3.09 £ 0.16) | 0.81 +£0.05 (3.18 £ 0.16)
0.60 0.70 £0.06 (3.21 £ 0.12) | 0.77 = 0.03 (3.28 £ 0.09)

In the case of regression task, the CF goal must be adapted with a
validity threshold (6): |ho () — ho(x)| > 6, 0 € Ry
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Sparsity vs. Validity: The Boston Housing

Validity (Sparsity)
Threshold () RELAX-GLOBAL RELAX-LocAL
0.20 0.81 £0.09(3.02 £0.17) | 0.87 £0.05 (3.10 £ 0.18)
0.40 0.74 £0.06 (3.09 £ 0.16) | 0.81 +£0.05 (3.18 £ 0.16)
0.60 0.70 £0.06 (3.21 £ 0.12) | 0.77 = 0.03 (3.28 £ 0.09)

In the case of regression task, the CF goal must be adapted with a
validity threshold (6): |ho () — ho(x)| > 6, 0 € Ry

The higher the threshold the harder is for ReLAX to find a valid CF
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Experiments: Proximity vs. Generation Time

. CF Generation Methods

Aiekaio Datagel; [Mofiels] RELAX-GrobAL | RELAX-LocaL |  LORE MACE
Breast Cancer [RF, MLP] [4.46,5.92] [4.49, 5.87] [4.63,5.63] | [4.47, N/A]

Diabetes [ ADABOOST] [4.41] [4.50] [4.76] [N/A]

Proximity Sonar [MLP] 17.32] [7.66] [7.36] [N/A]
Wave [XGBoOST, MLP] [5.93, 6.38] [6.02,6.50] | [6.60,6.41] | [N/A, N/A]

Boston Housing [MLP-REG] [5.10] [5.36] [N/A] [N/A]

Generation Time (secs.) . 1500 1320 2100 2280

RelLAX-Global generates CFs that are closer to the original
iInput instance but ReLAX-Local takes less time on average
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Experiments: The Hyperparameter A

A controls the balance between sparsity and validity
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Experiments: The Hyperparameter A

A controls the balance between sparsity and validity

Sonar [MLP] Sonar [MLP]
+-—- RelLAX-Global +- RelLAX-Local -+~ RelLAX-Global «— RelLAX-Local
3.0 0.8 d
> 2
&= 25 5% 2 06 N
g = |
© \ —
0. - g
V20 0.4
1.5
0.2 3
0 2 4 6 8 10 0 2 4 6 8 10
A A

Larger values
of A force the
agent to prefer
sparser CFs at
the expense of
lower validity
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Who Explains the Explainer?

The complex network structure of a DRL policy learned for CF generation
poses a challenge for understanding the decision logic of the agent
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Who Explains the Explainer?

The complex network structure of a DRL policy learned for CF generation
poses a challenge for understanding the decision logic of the agent

To explain the decision process of a learned policy, we distill knowledge
from the policy to a naturally-interpretable decision tree

Distilled Decision Tree Policy

T
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Use Case: COVID-19 (Risk of Mortality)

We apply ReLAX to generate CF explanations for a binary classifier (XGBoost
with 500 trees) trained to predict the risk of mortality for COVID-19
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Use Case: COVID-19 (Risk of Mortality)

We apply ReLAX to generate CF explanations for a binary classifier (XGBoost
with 500 trees) trained to predict the risk of mortality for COVID-19

We use generated CFs to sketch an action plan to lower the risk of mortality
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Use Case: COVID-19 (Risk of Mortality)

We apply ReLAX to generate CF explanations for a binary classifier (XGBoost
with 500 trees) trained to predict the risk of mortality for COVID-19

We use generated CFs to sketch an action plan to lower the risk of mortality
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Use Case: COVID-19 (Risk of Mortality)

We apply ReLAX to generate CF explanations for a binary classifier (XGBoost
with 500 trees) trained to predict the risk of mortality for COVID-19

We use generated CFs to sketch an action plan to lower the risk of mortality
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As obvious as they sound, many countries have suggested or enacted similar
strategies to counter the COVID-19 pandemic (see here and here)
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https://www.npr.org/sections/health-shots/2022/01/06/1069369625/short-staffed-and-covid-battered-u-s-hospitals-are-hiring-more-foreign-nurses
https://www.cdc.gov/obesity/data/obesity-and-covid-19.html

Take-Home Message

« Attaching (human-understandable) explanations to accurate
ML/AI model predictions is crucial in many critical domains
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Take-Home Message

« Attaching (human-understandable) explanations to accurate
ML/AI model predictions is crucial in many critical domains

 |f we don’t want to trade accuracy for explainability, we need to
develop post-hoc explainers for complex, black-box models
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Take-Home Message

« Attaching (human-understandable) explanations to accurate
ML/AIl model predictions is crucial in many critical domains

 |f we don’t want to trade accuracy for explainability, we need to
develop post-hoc explainers for complex, black-box models

» Counterfactual examples (CFs) are promising tools to
generate actionable explanations
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Take-Home Message

« Attaching (human-understandable) explanations to accurate
ML/AI model predictions is crucial in many critical domains

 |f we don’t want to trade accuracy for explainability, we need to
develop post-hoc explainers for complex, black-box models

» Counterfactual examples (CFs) are promising tools to
generate actionable explanations

* We present a state-of-the-art CF generation method based on
reinforcement learning and its application to a real use case
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So, What's Next?

« Counterfactual explanation is a very trendy research topic! A
few possible open challenges are:

« Developing new CF generation methods (e.g., based on/inspired by
diffusion models)
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So, What's Next?

« Counterfactual explanation is a very trendy research topic! A

few possible open challenges are:
« Developing new CF generation methods (e.g., based on/inspired by
diffusion models)
« Generating CFs for new prediction settings (e.g., sequential
recommender systems, anomaly detection tools)
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So, What's Next?

« Counterfactual explanation is a very trendy research topic! A

few possible open challenges are:
« Developing new CF generation methods (e.g., based on/inspired by
diffusion models)
« Generating CFs for new prediction settings (e.g., sequential
recommender systems, anomaly detection tools)
* Incorporating personalization into CFs (not every actionable feature
has the same weight across different input samples)
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So, What's Next?

« Counterfactual explanation is a very trendy research topic! A

few possible open challenges are:

« Developing new CF generation methods (e.g., based on/inspired by
diffusion models)

« Generating CFs for new prediction settings (e.g., sequential
recommender systems, anomaly detection tools)

* Incorporating personalization into CFs (not every actionable feature
has the same weight across different input samples)

« Extracting natural language explanations from generated CFs
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Suggestions?

Let’s Collaborate!

January 12, 2024

2024 MT4H International Workshop — Valencia, Spain

96



