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My Research Group

HERCOLE Lab

Sounds cool? Check out the 
lab's home page

(still under construction, sic!)
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Performance vs. Explainability Trade-Off
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There has been a trend for AI/ML 
models to get more powerful

This is partly due to the increasing 
model complexity (e.g., number of 
parameters, deep network architectures) 

Performance improvements often come at 
a cost of compromised explainability
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e.g., linear/logistic regression coefficients are 
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Deep ML Complex models are more expressive but 
opaque
e.g., multi-billion parameter NNs

Convoluted Decision Boundary Surface



The Need for Explainable AI (XAI)
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https://medium.com/@BonsaiAI/what-do-we-want-from-explainable-ai-5ed12cb36c07



The Need for Explainable AI (XAI)

• AI/ML systems are widely deployed to support decision-making 
processes in several application contexts
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The Need for Explainable AI (XAI)

• AI/ML systems are widely deployed to support decision-making 
processes in several application contexts

• In many domains, highly accurate predictions are not enough!
• Healthcare: A physician must be able to tell their patient the rationale 

behind an AI/ML-based diagnosis
• Finance: A banker must be able to tell their customer why they won’t grant 

them a loan

• AI/ML-based predictions should be comprehensible to every 
stakeholder (including non-experts) 
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The Need for Explainable AI (XAI)

• Several attempts have been made to promote XAI as part of 
broader data privacy regulation initiatives
• EU GDPR (General Data Protection Regulation)
• HIPAA (Health Insurance Portability and Accountability Act) Privacy 

Rule 
• CCPA (California Consumer Privacy Act)
• PCI DSS (Payment Card Industry Data Security Standard) 
• NIST AI Risk Management Framework
• …
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Taxonomy of XAI Methods
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Counterfactual Explanations: Intuition

• Post-hoc local explanation method to interpret predictions of 
individual instances
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Counterfactual Explanations: Intuition

• Post-hoc local explanation method to interpret predictions of 
individual instances

• Search for modified versions of input samples that result in 
alternative output responses from the predictive model

• Explanations take the following form: 

“If A had been different, B would not have occurred”
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Counterfactual Explanations: Example
Will I have diabetes?
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Fat Level
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Counterfactual Explanations: Example
Will I have diabetes?

Yes/No + Explanation

Age Gender Exercise 
Level

Fat Level

45 M Low High

Factual

Counterfactual Age Gender Exercise 
Level

Fat Level

45 M Medium Low

Yes
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Counterfactual Explanations: Example
Will I have diabetes?

Yes/No + Explanation

Age Gender Exercise 
Level

Fat Level

45 M Low High

Factual

Counterfactual

Explanation: 
You will not develop diabetes if you increase your exercise level and lower your fat level 

Age Gender Exercise 
Level

Fat Level

45 M Medium Low

Yes

No
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AI/ML model



Finding Counterfactual Examples (CFs)

Given an input sample x, 
there may be (infinitely?) 
many counterfactual 
examples

We need to restrict our 
search to “some” of them!
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Finding the “Optimal” CF (for a given x)

counterfactual loss
penalizes if the CF goal 

is not met 

CF goal:
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Finding the “Optimal” CF (for a given x)

distance loss
discourages the CF to be too far 

away from the original input x

e.g., L1-norm
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Finding the “Optimal” CF (for a given x)

Set of “actionable” 
features

Limit on the number of 
“actionable” features to change
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Evaluation Metrics for CFs

Validity (1-Fidelity)
Measures the ratio of 
generated CFs that 
actually meet the 

counterfactual goal
(the higher the better)
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Evaluation Metrics for CFs

Validity (1-Fidelity)
Measures the ratio of 
generated CFs that 
actually meet the 

counterfactual goal
(the higher the better)

Proximity
Computes the distance 

between a (valid) CF and 
the original input sample
(the lower the better)

L1-norm or L2-norm
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Evaluation Metrics for CFs

Sahil, V., Dickerson, J. and Hines, K., 2022. Counterfactual Explanations for Machine Learning: A Review. arXiv:2010.10596.

Sparsity
Indicates the number of 

features modified to 
obtain the CF

(the lower the better)

L0-norm

Validity (1-Fidelity)
Measures the ratio of 
generated CFs that 
actually meet the 

counterfactual goal
(the higher the better)

Proximity
Computes the distance 

between a (valid) CF and 
the original input sample
(the lower the better)

L1-norm or L2-norm
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https://arxiv.org/abs/2010.10596


Our Contributions to CF Explanations
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Our Contributions to CF Explanations
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ReLAX: 
Reinforcement Learning Agent Explainer 

for Arbitrary Predictive Models

Chen, Z., Silvestri, F., Wang, J., Zhu, H., Ahn, H. and Tolomei, G., 2022, October. ReLAX: Reinforcement Learning Agent Explainer for Arbitrary Predictive 
Models. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 252-261).

Chen, Z., Silvestri, F., Tolomei, G., Wang, J., Zhu, H. and Ahn, H., 2022. Explain the Explainer: Interpreting Model-Agnostic Counterfactual Explanations 
of a Deep Reinforcement Learning Agent. IEEE Transactions on Artificial Intelligence.



Finding the “Optimal” CF Generator

Counterfactual Goal
works both for classification 

and regression tasks
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Finding the “Optimal” CF Generator

How Do We Find gθ*?
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Finding the “Optimal” CF Generator

from instance-level (local) to dataset-level (global) explanations
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Finding the “Optimal” CF Generator

from optimizing to learning
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ReLAX: Intuition
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red
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ReLAX: Intuition
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black-box model
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ReLAX: Intuition

0.2

blue

20

red
black-box model

RL Agent

1) The RL Agent picks 
a feature to modify
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ReLAX: Intuition

0.7

blue

20

red
black-box model

RL Agent

2) The RL Agent 
chooses the magnitude 
of the feature change
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ReLAX: Intuition

0.7

blue

5

red
black-box model

RL Agent

2) The RL Agent 
chooses the magnitude 
of the feature change
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ReLAX: Intuition
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black-box model
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ReLAX: Intuition

0.7

blue

20

red

5
RL Agent

The RL Agent 
terminates when the 

CF goal is met!
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Markov Decision Process Formulation
We formulate the problem of finding the optimal CF generator gθ* as an MDP
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Markov Decision Process Formulation
We formulate the problem of finding the optimal CF generator gθ* as an MDP

States The current modified sample along with the features changed so far

Actions Discrete-Continuous Hybrid Actions: Which feature, What change

Transitions
Reward Trade-off between CF goal and the distance of the CF from the original input

We find the optimal policy to apply the best sequence of actions to each input
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Deterministic function moving from one state to another



Our Proposed Framework
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Experiments: Datasets and Tasks
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Experiments: (Black-Box) Models
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Experiments: Sparsity vs. Validity

ReLAX achieves the 
best trade-off between 
sparsity and validity of 

the generated CFs
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Sparsity vs. Validity: The Boston Housing

Dataset-level 
Explainer
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Sparsity vs. Validity: The Boston Housing

Instance-level 
Explainer
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In the case of regression task, the CF goal must be adapted with a 
validity threshold (𝛿):

Sparsity vs. Validity: The Boston Housing
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Sparsity vs. Validity: The Boston Housing

In the case of regression task, the CF goal must be adapted with a 
validity threshold (𝛿):

The higher the threshold the harder is for ReLAX to find a valid CF
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Experiments: Proximity vs. Generation Time

ReLAX-Global generates CFs that are closer to the original 
input instance but ReLAX-Local takes less time on average 
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Experiments: The Hyperparameter λ

λ controls the balance between sparsity and validity
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Experiments: The Hyperparameter λ

λ controls the balance between sparsity and validity

Larger values
of λ force the 

agent to prefer 
sparser CFs at 
the expense of
lower validity 

802024 MT4H International Workshop – Valencia, SpainJanuary 12, 2024



Who Explains the Explainer?
The complex network structure of a DRL policy learned for CF generation 

poses a challenge for understanding the decision logic of the agent
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Who Explains the Explainer?
The complex network structure of a DRL policy learned for CF generation 

poses a challenge for understanding the decision logic of the agent

To explain the decision process of a learned policy, we distill knowledge 
from the policy to a naturally-interpretable decision tree
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Use Case: COVID-19 (Risk of Mortality)
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Use Case: COVID-19 (Risk of Mortality)
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We apply ReLAX to generate CF explanations for a binary classifier (XGBoost 
with 500 trees) trained to predict the risk of mortality for COVID-19 

We use generated CFs to sketch an action plan to lower the risk of mortality

● Decrease death rate
● Decrease unemployment rate
● Increase nurse rate per 10,000 people
● Decrease urban population rate
● Decreasing obesity prevalence

As obvious as they sound, many countries have suggested or enacted similar 
strategies to counter the COVID-19 pandemic (see here and here) 

https://www.npr.org/sections/health-shots/2022/01/06/1069369625/short-staffed-and-covid-battered-u-s-hospitals-are-hiring-more-foreign-nurses
https://www.cdc.gov/obesity/data/obesity-and-covid-19.html


Take-Home Message
• Attaching (human-understandable) explanations to accurate 

ML/AI model predictions is crucial in many critical domains
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Take-Home Message
• Attaching (human-understandable) explanations to accurate 

ML/AI model predictions is crucial in many critical domains
• If we don’t want to trade accuracy for explainability, we need to 

develop post-hoc explainers for complex, black-box models
• Counterfactual examples (CFs) are promising tools to 

generate actionable explanations
• We present a state-of-the-art CF generation method based on 

reinforcement learning and its application to a real use case
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So, What’s Next?
• Counterfactual explanation is a very trendy research topic! A 

few possible open challenges are:
• Developing new CF generation methods (e.g., based on/inspired by 

diffusion models)
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So, What’s Next?
• Counterfactual explanation is a very trendy research topic! A 

few possible open challenges are:
• Developing new CF generation methods (e.g., based on/inspired by 

diffusion models)
• Generating CFs for new prediction settings (e.g., sequential 

recommender systems, anomaly detection tools)
• Incorporating personalization into CFs (not every actionable feature 

has the same weight across different input samples)
• Extracting natural language explanations from generated CFs
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Let’s Collaborate!

Thoughts? Ideas?
Suggestions?


