Task Supervision Using
Formal Languages

Supervising Tasks Based on Few Expert Examples

ﬂl VRAIN % GENERALITAT

VALENCIANA
A\

A58 UNIVERSITAT
“ClDE POLITECNICA
%/ DE VALENCIA

Valencian Research Institute
for Artificial Intelligence

Machine Teaching Humans

— Teaching involves expert supervision of task executions by students
— Mistake recognition
— Evaluation
— Correction

— Teaching is time-consuming, expensive and doesn’t scale well

— Machine supervision is more optimal than human supervision
— Scaling
— Cost-effective

Generalised Approach

Collect few expert
task executions
O\

Generalise expert
executions

£
Supervise students

using generalised
executions

The Difficulties of Task Generalisation

— Generalising tasks based on event sequences can be challenging
— Generalising the task of making a salad is a great example:
— Many different recipes for a salad

— Different sequences and ingredient sets

— Generalising all recipes can lead to unexpected results

Generalising Expert Executions — Based on Prior Work

Models

Iter. 1

(
o Extracting models ._’ ‘
Database of Tragsforrr:ng Into — Q \
task ependency ggreg j

. Graphs 4
executions \ | Refinement

Iter. 2

\ =2\

WI[(a1, 32, 3,22, .., 23) | \ .

Nieves, D., Ramirez-Quintana, M., Monserrat, C., Ferri, C., Hernandez-Orallo, J.: “Learning alternative ways of performing
a task.” Expert Systems with Applications 148, 113263 (2020). https://doi.org/10.1016/j.eswa.2020.113263 5

Advantages and Disadvantages of Formal Methods for
Task Supervision

— Expressiveness

— Formal reasoning

— Efficient at handling tasks and their representations

Event Calculus — First Order Logic Language for
Events and their Effects

Predicates:

initiates(E,F,T) Event E initiates (makes true) the fluent F from
time T+1.

terminates(E,F,T) Event E terminates (makes false) the fluent F from
time T+1.

holdsAt (F,T) Fluent F is true at time T.

stoppedIn(T,,F,T2) Fluent F is terminated in an instant of time between
T: and Ta.

happens (E,T) Event E occurs at time T.

General Axioms from EC:

initiates(E, started(E), T) :- happens(E,T).

terminates(E, started(E;), T) :- happens(E,T), holdsAt(started(E;),T).

initiates(E, completed(E;), T) :- happens(E,T), holdsAt(started(E;),T).

holdsAt (F,T) :- happens(E,T;), initiates(E,F,T;),

not stoppedIn(T;,F,T), T <T.
stoppedIn(T;,F,T2) :- happens(E,T), T; <T, T<T2, terminates(E,F,T).

Our Approach using First Order Logic Languages

— Encoded dependency graph divided into three parts

() (@)
@—® XD <O
(& O

Event Calculus Encoding

Encoded as:

: —happens(b, T), not predecesor(a, b, T).

Event Calculus Encoding

©

2

CASE |TRANSLATION

: —happens(d, T), happens(a,T;),T; < T,not bbetween(a,d,T),

AND happens(b, T;),T» < T,not bbetween(b,d,T),
happens(c,T3),Ts < T,not bbetween(c,d,T).

: —happens(d, T),not 1{predecesor(a,d,T),predecesor(b,d,T),

OR predecesor(c,d,T)}.

: —happens(d, T), previous(d, T, T;),not 1{happens(a,T,),

XOR happens(b, Ty), happens(c, Ty) : Ty < Ty < T}1.

10

Our Approach using Clingo

happens(gS,1).
happens(gl,2).
h 5,3).
— Encoded Sequence of Events h:gg::§§§8,4§,
happens(g2,5).
happens(g3,6).
happens(g6,7).

— Sequence Evaluation

e

S, G1, G5, G8, G2, G3, _G6, G4, G2, G3, G6, G4, G2, G3,- G6, G4, G2,G3,G6,G11,F 1

Alternative Approach with Maude

— Powerful declarative language

— Rewriting logic

— Execution analysis (XAl)

— Counterexamples (XAl)

— UPV involvement in development

MoudE3d

12

Future Work

— Adjusted approach towards task generalisation

— Use of expert description of the task to check and complement supervision
(Maude)

— Adding more potential to the supervision process (and split, or split, xor split,
combinations, ...).

— Model enhancement with expert knowledge

13

